Python pandas找出、删除重复的数据实例

2025-12-13 0 698

当我们使用pandas处理数据的时候,经常会遇到数据重复的问题,如何找出重复数据进而分析重复原因,或者如何直接删除重复的数据是一个关键的步骤,pandas提供了很方便的方法:duplicated()和drop_duplicates()。

一、duplicated()
duplicated()可以被用在DataFrame的三种情况下,分别是pandas.DataFrame.duplicated、pandas.Series.duplicated和pandas.Index.duplicated。他们的用法都类似,前两个会返回一个布尔值的Series,最后一个会返回一个布尔值的numpy.ndarray。

DataFrame.duplicated(subset=None, keep=‘first’)

subset:默认为None,需要标记重复的标签或标签序列

keep:默认为‘first’,如何标记重复标签

first:将除第一次出现以外的重复数据标记为True
last:将除最后一次出现以外的重复数据标记为True
False:将所有重复的项都标记为True(不管是不是第一次出现)
Series.duplicated(keep=‘first’)

keep:与DataFrame.duplicated的keep相同

Index.duplicated(keep=‘first’)

keep:与DataFrame.duplicated的keep相同

例子:

import pandas as pd
df = pd.DataFrame({
\’brand\’: [\’Yum Yum\’, \’Yum Yum\’, \’Indomie\’, \’Indomie\’, \’Indomie\’],
\’style\’: [\’cup\’, \’cup\’, \’cup\’, \’pack\’, \’pack\’],
\’rating\’: [4, 4, 3.5, 15, 5]
})
df
brand style rating
0 Yum Yum cup 4.0
1 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0

df.duplicated()
0 False
1 True
2 False
3 False
4 False
dtype: bool

df.duplicated(keep=\’last\’)

0 True
1 False
2 False
3 False
4 False
dtype: bool

df.duplicated(keep=False)
0 True
1 True
2 False
3 False
4 False
dtype: bool

df.duplicated(subset=[\’brand\’])
0 False
1 True
2 False
3 True
4 True
dtype: bool

关于Index的重复标记:

df = df.set_index(\’brand\’)
df
style rating
brand
Yum Yum cup 4.0
Yum Yum cup 4.0
Indomie cup 3.5
Indomie pack 15.0
Indomie pack 5.0

df.index.duplicated()

array([False, True, False, True, True])

二、drop_duplicates()
与duplicated()类似,drop_duplicates()是直接把重复值给删掉。下面只会介绍一些含义不同的参数。

DataFrame.drop_duplicates(subset=None, keep=‘first’, inplace=False)

subset:与duplicated()中相同
keep:与duplicated()中相同
inplace:与pandas其他函数的inplace相同,选择是修改现有数据还是返回新的数据
Series.drop_duplicates()相比Series.duplicated()也是多了一个inplace参数,和上诉介绍一样,Index.drop_duplicates()与Index.duplicated()参数相同就不做赘述。下面是例子:

df = pd.DataFrame({
\’brand\’: [\’Yum Yum\’, \’Yum Yum\’, \’Indomie\’, \’Indomie\’, \’Indomie\’],
\’style\’: [\’cup\’, \’cup\’, \’cup\’, \’pack\’, \’pack\’],
\’rating\’: [4, 4, 3.5, 15, 5]
})
df
brand style rating
0 Yum Yum cup 4.0
1 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0

df.drop_duplicates()
brand style rating
0 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0

df.drop_duplicates(inplace = True)

df
brand style rating
0 Yum Yum cup 4.0
2 Indomie cup 3.5
3 Indomie pack 15.0
4 Indomie pack 5.0

有剩余无,pandas有很多好用的库,但是系统学下来很不现实,都是在实际项目中不断的发现、积累、记录下来。

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 Python pandas找出、删除重复的数据实例 https://www.zuozi.net/36297.html

常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务