Python工具箱系列(十七)

2025-12-13 0 485

很多软件工程师都认为MD5是一种加密算法,然而这种观点是不对的。作为一个 1992 年第一次被公开的算法,到今天为止已经被发现了一些致命的漏洞。本文讨论MD5在密码保存方面的一些问题。

假设下面一个场景

  • 软件产品让用户输入用户名与口令,随即使用MD5算法将口令(明文)转变成为摘要值。
  • 用户登录时,用户输入的口令,也使用MD5进行计算,然后与存储的MD5进行比较,如果相同,则用户成功登录。
  • 由于没有存储口令的原始值,所以即使相关人员(工程师、运维人员、黑客)获得了口令的MD5值,根据算法的特性,也无法知道原始的口令内容。
  • 正是算法的不可逆性,因为口令只能够重新生成,而系统无法反馈原始的口令是什么。

以上场景是非常完美的。但是由于人类的弱点,大部分人会选择非常简单易记,或者有特殊意义的字符串做为口令。攻击者只需要将一些常见密码提前计算一下哈希就可以找到数据库中很多用于存储的密码,Wikipedia 上有一份关于最常见密码的列表,在2016年的统计中发现使用情况最多的前25个密码占了调查总数的10%,虽然这不能排除统计本身的不准确因素,但是也足以说明仅仅使用哈希的方式存储密码是不够安全的。提前计算的HASH表称为彩虹表,存储着一些常见密码的哈希,当攻击者通过入侵拿到某些网站的数据库之后就可以通过预计算表中存储的映射来查找原始密码如下图所示。

Python工具箱系列(十七)

Python工具箱系列(十七)

为了抵抗上述的暴力方法,可以使用md5加盐的策略,进一步强化md5暴力破解的难度。在上世纪70到80年代,早期版本的Unix系统就在/etc/passwrd中存储加盐的哈希密码,密码加盐后的哈希与盐会被一起存储在/etc/passwd文件中,今天哈希加盐的策略与几十年前的也没有太多的不同,差异可能在于盐的生成和选择。一个示范性质的代码如下所示。

from random import Random
from hashlib import md5

# 获取由4位随机大小写字母、数字组成的salt值
def create_salt(length=4):
  salt = \'\'
  chars = \'AaBbCcDdEeFfGgHhIiJjKkLlMmNnOoPpQqRrSsTtUuVvWwXxYyZz0123456789&#39\'
  len_chars = len(chars) - 1
  random = Random()
  for i in range(length):
    # 每次从chars中随机取一位
    salt += chars[random.randint(0, len_chars)]
  return salt

# 获取原始密码+SALT,计算返回MD5值
def create_md5(pwd, salt):
  md5_obj = md5()
  inputstr = pwd+salt
  md5_obj.update(inputstr.encode(encoding=\'utf-8\'))
  return md5_obj.hexdigest()

pwd = \'123456\'
salt = create_salt()
finalmd5 = create_md5(pwd,salt)
print(f\'pwd:{pwd},salt:{salt},md5:{finalmd5}\')

执行后的效果如下所示。

pwd:123456,salt:lhDy,md5:e7a2a020e5738dc9cc7822ca11b6fdf7

在实际使用时,需要保存salt的值与计算结果。加盐的方式主要还是为了增加攻击者的计算成本,当攻击者顺利拿到数据库中的数据时,由于每个密码都使用了随机的盐进行哈希,所以预先计算的彩虹表就没有办法立刻破译出哈希之前的原始数据,攻击者对每一个哈希都需要单独进行计算,这样能够增加了攻击者的成本,减少原始密码被大范围破译的可能性。但这个貌似完美的策略还是被发现存在问题。因为一个哈希函数或者摘要算法被找到哈希碰撞的概率决定了该算法的安全性,早在几十年前,人们就在MD5的设计中发现了缺陷并且在随后的发展中找到了低成本快速制造哈希碰撞的方法:

  • 1996年《The Status of MD5 After a Recent Attack》——发现了MD5设计中的缺陷,但是并没有被认为是致命的缺点,密码学专家开始推荐使用其他的摘要算法;
  • 2004年《How to Break MD5 and Other Hash Functions》——发现了MD5摘要算法不能抵抗哈希碰撞,我们不能在数字安全领域使用MD5算法;
  • 2006年《A Study of the MD5 Attacks: Insights and Improvements》——创建一组具有相同MD5摘要的文件;
  • 2008年《MD5 considered harmful today》——创建伪造的SSL证书;
  • 2010年《MD5 vulnerable to collision attacks》——CMU软件工程机构认为MD5摘要算法已经在密码学上被破译并且不适合使用;
  • 2012年《Flame》——恶意软件利用了MD5的漏洞并伪造了微软的数字签名。

总结一下,之所以基于MD5的密码保存与对比策略不安全是因为:

  • 实际应用的大量口令本身很简单;
  • MD5计算起来非常快,攻击者今天可以通过 GPU 每秒执行上亿次的计算来破解用户的密码;
  • 算法自身的缺陷。
收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 Python工具箱系列(十七) https://www.zuozi.net/36255.html

常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务