awesome generative ai
- 生成的AI区域
- 生成的AI历史记录,时间表,地图和定义
- 关于生成AI的伦理,哲学问题和讨论
- 关于生成AI的批判观点
- 生成的AI过程和工件
- 生成AI工具目录
- 课程和教育材料
- 人类互动
- 论文收集
- 在线工具和应用程序
- 代码和编程
- 氛围编码
- AI驱动的代码生成
- 文本
- 图像
- 图像合成
- 收件箱:稳定的扩散
- 稳定的扩散部署网络工具
- Web UI用于通过Google Colab稳定扩散的稳定扩散
- 有关稳定扩散的参考集合
- 高血压
- 控制网
- 文本反转
- Dreambooth
- 辩护
- 生成AI图像合成工具的创造用途
- 收件箱:稳定的扩散
- 图像升级
- 图像修复
- 图像分割
- 图像合成
- 视频和动画
- 音频和音乐
- 演讲
- 文本到语音(TTS)和化身
- 播客发电机
- 语音到文本(STT)和口头内容分析
- 文本到语音(TTS)和化身
- 游戏
- 多模式
- 多模式嵌入空间
- 数据集
- 杂项
- AI和教育
- 人与工作
- 有趣的Twitter帐户
- 有趣的Instagram帐户,帖子和卷轴
- 有趣的YouTube频道
- 有趣的GitHub存储库
- 艺术家和艺术品
- 画廊
- 相关的很棒列表
- 生物实验
- 生成AI的工作
- 改善Google Colab体验
- 辅助工具和概念
- 降低技术
- 路线图,轨道,轨道
- 随着时间的流逝,观星者
- 贡献
- 执照
存储库简介
欢迎使用我们的生成AI资源清单!该存储库是生成AI动态领域中的参考集合,配备了各种资源,例如学术论文,技术文章,在线课程,教程和软件。
结构
-
部分:每个部分代表不同的生成性AI相关类别(例如,LLMS,及时工程,图像合成,教育资源等)。收件箱是类别的更一般的参考。当出现新类别时,它将成为特定的小节。
-
各节中的参考文献:在每个部分中,参考文献以相反的时间顺序列出,最新的参考文献位于顶部。该订单表示生成AI的不断发展的景观,使您了解最新的发展。
该存储库旨在为您提供触手可及的最新进步,使您可以按照自己的步调探索旧资源的深度。它定期更新,以确保您始终保持生成AI的迅速发展。
为我们的存储库做出贡献
欢迎您的贡献,非常感谢!如果您有一个宝贵的资源,您认为应该在此列表中,或者看到任何过时的信息,请提出拉动请求。这将有助于我们保持出色列表的质量和相关性。
遵循此路线图,继续学习,并享受生成AI的旅程!
生成的AI区域
生成的AI历史记录,时间表,地图和定义
- AI时间轴
- 代理市场
- [] 2024 AI时间轴:Reach-vb的拥抱面孔空间
- 生成AI的制图:“哪种提取,机构和资源集允许我们使用文本生成工具在线交谈或在几秒钟内获取图像?”
- 生成AI大语言模型(LLM)的兴起:通过信息进行的交互式时间表可视化很美
- AI时间轴(@theaitimeline) / x
- 初学者的生成AI:第1部分 – AI简介|由Raja Gupta |中等的
- 人工智能学习路线图[AI路线图] 2024
- 生成ai -dataversity的简短历史
- 生成AI历史的简单指南|伯纳德·马尔
- 2023年1月至2023年7月的生成AI时间表
- 生成AI的兴起:胜利,打ic和炒作的时间表| CIO潜水
- 时间的简短历史:解码生成AI的演变| LinkedIn
- [] Firstmark | 2024 MAD(ML/AI/DATA)景观:2024年MAD(机器学习,AI和数据)景观
- AI预测的时间表-AI Digest
- 生成的AI冰山
- []简而
- 您必须从中了解60多个生成的AI术语:分析vidhya
- AI堆栈的四场战争(2023年12月回顾):“从2023年12月开始为AI工程师的顶级项目回顾”(“数据大战,GPU富裕的战争/贫穷的战争,多模式战争,RAG/OPS战争”))
- Brian Solis的Genai Prism信息图:与生成AI合作的框架
- LLM可视化
- [2310.04438]简短的及时历史:利用语言模型:本文介绍了及时工程演变的探索。作者Golam MD Muktadir,广泛使用的Chatgpt用于内容生成
- AI工程师的机器学习和生成AI指南|由Ai Geek(Wishesh)| 2023年10月|中等的
- 生成AI研究的新兴趋势:近期论文的选择
- 当今LLM应用程序的架构 – GitHub博客
- [] [2310.07127]以HCI为中心的人类相互作用的调查和分类法:“对154篇论文的调查,从人类和Gen-ai的角度提供了新的分类学和对人类与人类相互作用的分析”。
- 生成ai的构建基块|由乔纳森·萨里夫曼(Jonathan Shriftman)|中等的
- []生成的AI是由于变压器而存在的:金融时报的视觉故事
- AI的早期 – 作者:Elad Gil:关于AI的想法是“过去的全新时代和过去的不连续性”
- 下一个进度的标志:在生成AI地平线上解锁4个|安德烈·霍洛维茨(Andreessen Horowitz)
- [2309.07930]生成AI:讨论有关生成AI的模型,系统和应用程序级别的视图。
- 2023年的AI状态:Generative AI的突破年份|麦肯锡
- AI大语言模型如何工作的无术解释| ARS Technica
- 生成的AI革命:探索当前的景观|迈向AI社论团队| 2023年6月|朝着人工智能
- AI冬天的故事及其今天教给我们的东西
- 没有这个,就不会有LLM(历史系列中的第3集):LLM的时间表Turing Post
- 下一个进度的标志:在生成AI地平线上解锁4个| Andreessen Horowitz:地平线上的关键创新:转向,内存,使用工具的能力和多模式
- 生成AI的经济潜力:下一个生产力前沿:麦肯锡的报告,2023年6月
- 生成AI应用程序的调查| ARXIV:“这项调查旨在作为研究人员和从业者迅速扩展生成AI的景观的宝贵资源”
- 纸摘要 – chatgpt:最近关于chatgpt的论文
- AI指数报告2023 – 人工智能指数:衡量斯坦福大学以人工智能撰写的AI趋势的报告
- 大型语言模型的调查:总结语言模型演变的论文,重点是LLM,讨论其进步,技术以及对AI开发和使用的影响
- David Foster的生成AI时间表:LinkedIn的帖子
- 谁拥有Generative AI平台? |安德森·霍洛维茨(Andreessen Horowitz):本文讨论了生成的AI市场,并提出了该地区有趣的技术堆栈
- 对AI生成的内容(AIGC)的全面调查:从GAN到CHATGPT的生成AI的历史| arxiv
- []针对生成AI应用的一般设计原理:本文介绍了一组生成AI应用程序的七个原则
- []生成AI景观报告的景观|由Ramsri Goutham | 2023年1月|媒介:一份关于9家风险投资公司发布的报告的元报告
- 带有Cohere的生成AI:第1部分 – 模型提示:Cohere AI的生成AI概述
- 带有Cohere的生成AI:第2部分 – 用例构想:Cohere AI的生成AI用例列表
- 大型语言模型以及在哪里使用它们:第1部分:Cohere AI的LLM用例列表
- 大型语言模型和在哪里使用它们:第2部分
- 生成AI有什么大不了的?是未来还是现在?:Cohere AI的生成AI领域的摘要
- AI和语言模型的时间表:LLM时间轴由Life Architect的Alan D. Thompson博士组织
- 一项关于审计基础模型的全面调查:从伯特到chatgpt的历史| arxiv
- 从历史角度来评论生成AI的评论:Dipankar Dasgupta,Deepak Venugopal和Kishor Datta Gupta的论文
- Twitter上的Matt Shumer:“权威AI市场地图Twitter线程”:“权威AI市场地图Twitter线程”
- [] BASE11研究 – 生成-AI:有关投资公司基本生成的生成AI的报告10
- WOW的引擎:AI艺术成年 – 史蒂夫·默奇(Steve Murch)
- AI在2022年末 / Twitter的场景中爆炸:分析生成AI工具的类别
- []映射生成的AI景观|鹿角
- [] AI时间轴:Fabian Mosele的文本到图像ML模型的历史
- AI生成的艺术:从文本到图像和超越示例
- 1周稳定扩散|多模式
关于生成AI的伦理,哲学问题和讨论
- ?爱因斯坦AI模型
- 充满爱心的机器 – AI如何改变世界的dario Amodei
- AI悲伤的五个阶段-Noema
- 生成AI伦理:8个最大的担忧和风险
- 自动化社会科学:语言模型作为科学家和学科| nber
- 现在该退休“用户”一词了:AI的扩散意味着我们需要一个新单词
- 了解人格特征,经验和态度如何影响对AI生成的艺术品的负面偏见|科学报告
- 跟踪AI:监视人工智能聊天机器人中的偏见
- AI的下一波超级智力会取代人类创造力吗?这很复杂 – 每日新闻
- 谁害怕科学怪人?和生成的AI? |快速公司巴西[PT-BR]
- Hito Steyerl,平均图像,NLR 140/141,3月至6月2023年
- AI艺术的版权难题 – 边缘
- 关于巴西人工智能发展的建议 – ABC [PT-BR]
- 我们必须停止AI复制监视资本主义的问题
- 集体智能服务的人工智能
- 新的培训方法可以像人们一样有助于AI普遍 – 科学美国人
- [2310.01405]表示工程:一种自上而下的人工智能透明度方法:“一种增强AI系统透明度的方法,它利用了认知神经科学的见解”
- 伯克利法律学院的生成AI资源 – 伯克利法律
- 许可既不可行,也不有效解决AI风险
- 生成AI公司必须发布透明度报告
- Chatgpt有自由主义的偏见吗?
- 人类比人类更多:衡量Chatgpt政治偏见|公共选择
- 重新定义偏见:对AI的人类偏见|中等的
- AI艺术及其对艺术家的影响:在2023年AAAI/ACM会议论文集上发表的有关AI,道德和社会的论文
- AI的年龄已经开始|比尔·盖茨
- Aikea效应:由Artur Piszek作者
- 人工智能的伦理:案例研究和解决道德挑战的选择| SpringerLink
- 拥抱变化和重置期望| Microsoft解锁:Terence Tao的文字
- 艺术与生成性AI的科学|科学
- AI从这里演变
- AI的年龄已经开始:Bill Gates的笔记
- GPT是GPT:早期研究劳动力市场的影响大语模型的潜力:OpenAI的论文,讨论了GPT对美国劳动力市场的可能影响
- 为什么生成的AI吓到艺术家而不是满足作家
- AI/AI的文化文化文化:Neurips 2022 Workshop网页
- AI数据洗涤-Waxy.org:学术和非营利研究人员如何使科技公司免于问责制
- [](1232)艺术的终结:反对图像AIS的论点 – YouTube:史蒂文·扎帕塔(Steven Zapata)的视频论文
- []艺术的终结:反对图像AIS(公共)的论点 – Google Docs:史蒂文·扎帕塔(Steven Zapata)的视频论文成绩单
- []生成AI:创意新世界|红杉资本美国/欧洲:红杉资本的报告有关生成AI的可能应用
- 合成创造力 – 卡文(Cavin) – 深度市场
- 我们对合成媒体未来的愿景|由维克多·里帕贝利(Victor Riparbelli)|中等的
- 深处:AI艺术的关键框架
- 摄影如何成为一种艺术形式|亚伦·赫兹曼(Aaron Hertzmann)的博客
- 计算机可以创造艺术吗?亚伦·赫兹曼(Aaron Hertzmann):2018年的文章发表在《艺术杂志》上
- 文本是通用接口 – 比例
- 这位艺术家正在主导AI生成的艺术。而且他对此不满意。 |麻省理工学院技术评论
- 对AI艺术的真正战斗:可稳定式| reddit
- Rutkowski与人工智能霸主作战| reddit
- 我们现在是采矿艺术,而不是使用GPU挖掘加密蛋白? | reddit
- 使用AI创造艺术不是艺术! | Reddit:ArtistLounge
- 欣赏AI艺术的诗意误解|纽约客
关于生成AI的批判观点
- 针对AI生成的用户的情况-IDEO
- 为什么将全部控制权交给AI代理将是一个巨大的错误|麻省理工学院技术评论
- Eryk Salvaggio的“关于生成AI的最周到的文章”的集合
- AI蛇油:将炒作与现实分开| techpolicy.press
- 解构AI神话:算法的谬论和危害
- 挑战生成性AI的神话| techpolicy.press
- 我厌倦了AI |测试自动化
- Vaikunthan Rajaratnam :: SSRN的Steffi Tan的批评会伤害史蒂夫·坦(Steffi Tan)的学习研究设计
- Generative AI可能会伤害Hamsa Bastani,Osbert Bastani,Alp Sungu,Haosen GE,ÖzgeKabakcı,Rei Mariman :: SSRN
- 我在职业生涯的大部分时间里都教书。我因为chatgpt而退出时间
- AI风险可能导致灾难| CAI
- AI风险存储库
- [2406.17864] AI风险分类解码(AIR 2024):从政府法规到公司政策
- “良好的AI”运动是错误的方法-IEEE Spectrum
- 生成的AI不是我们所承诺的灵丹妙药| Eric Siegel for Big Think+ -YouTube
- 詹姆斯·高斯林(James Gosling)对Genai的想法
- 自动化社会科学:语言模型作为科学家和学科| nber
- Genai泡沫何时破裂? – 加里·马库斯(Gary Marcus)
- 夜幕降临是“毒药”数据的工具,它为艺术家提供了对抗AI的战斗机会| TechCrunch
- AI如何使我们失败| Edmond&Lily Safra道德中心
- 生成的AI有一个视觉窃问题-IEEE Spectrum:“ Midjourney和Dall -E 3的实验显示版权雷区”
- [2308.03762] GPT-4无法理解:“尽管有真正令人印象深刻的改进,但有充分的理由对GPT-4的推理能力高度怀疑”
- 风险和伤害:在AI话语中解开意识形态|第五届对话用户界面国际会议论文集
- [2305.18654]信仰与命运:变形金刚的限制对组成性
- [2210.02667]一种基于人权的负责人AI的方法
- 关于随机鹦鹉的危险| 2021年ACM公平,问责制和透明度会议论文集
- 这种新的数据中毒工具使艺术家可以反抗生成的AI |麻省理工学院技术评论
- 生成人工智能对就业的短期影响:西安格hui,Oren Reshef,Luofeng Zhou :: SSRN的在线劳动力市场的证据
- 教育小组会议注释 – Google文档
- AI生成工具的教学大纲政策-Google文档
- 英国Bletchley Park的AI安全峰会的五个收获|人工智能(AI)|监护人
- Frontier AI:功能和风险 – 讨论纸 – gov.uk
- AI安全峰会政策更新|艾斯2023
- 负责任的企业决策具有知识增强的生成性AI |德勤荷兰
- [2310.13149]从HCI的角度了解艺术中的生成AI:与艺术家有关G-AI的访谈研究
- [2309.12338]人工智能和审美判断:“随着生成AI影响当代美学判断,我们概述了一些陷阱和陷阱,以试图审查AI产生的媒体的含义”
- AI崇拜|边缘革命
- Chatgpt背后的人工智能技术是在爱荷华州建造的 – 有很多水| AP新闻
- chatgpt很有趣,但不是作者|科学
- 在AI Boom的背后,一支在“数字汗坊”中的海外工人大军| 《华盛顿邮报》:菲律宾的AI的远程诉讼工人对低薪犯规
- 如果总是停下来,这不是聪明的:对当前AGI方法的关键观点|生活是计算
- 人工智能繁荣的人为成本| TechCrunch
- 人工智能骗局,垃圾邮件,黑客正在破坏互联网
- Chatgpt Revolution是另一个技术幻想
- 为什么AI会拯救世界|安德烈·霍洛维茨(Andreessen Horowitz)
- 好莱坞制片厂提出了AI合同,该合同将使他们的肖像权利“永恒” – 边缘
- 勇敢出售受版权保护的数据进行人工智能培训的阴暗世界
- 在AI工厂内:使技术看起来人性化的人类 – 边缘
- 为什么变革性人工智能真的很难实现
- AI和工作的自动化 – 本尼迪克特·埃文斯
- 尤瓦尔·诺亚·哈拉里(Yuval Noah Harari)认为AI已入侵了人类文明的操作系统
- 生成的AI具有刻板印象和偏见
- Openai的超级智能治理
- AIAAIC – AIAAIC存储库:“独立,开放,公共利益资源详细介绍了由人工智能,算法和自动化造成的事件和争议””
- 只要已经平静下来gpt -4 -IEEE Spectrum
- 暂停巨人AI实验:公开信 – 生命研究所的未来
- “ openai释放插件为chatgpt”:@thealexbanks的推文,以及有关chatgpt插件影响的反思列表
- 社会上公平的人工智能吗? | umainteligência人造社会justa justapossível吗?
- Noam Chomsky在Chatgpt上:这是“基本上是高科技窃”和“避免学习的方式” |开放文化
- 尽管有壮举,但大型语言模型仍然没有为语言学做出贡献|迈向数据科学
- Chatgpt会杀死学生论文吗? |大西洋
- 什么chatgpt和生成的人工智能对科学意味着什么|自然
- Chatgpt是一个胡说八道的发电机
- 关于生成AI和教育的未来的一些想法 – 马克·卡里根(Mark Carrigan)
- 教育工作者的注意事项 – openai api
- 稳定的扩散轻浮·,因为基于无知的诉讼值得回应。:社区对“稳定扩散诉讼”的反应
- 稳定的扩散诉讼·Joseph Saveri律师事务所和Matthew Butterick
- 生成语言模型和自动化影响操作:新兴的威胁和潜在缓解| Openai
- Chatgpt傻瓜科学家撰写的摘要
- 当机器改变艺术时|亚伦·赫兹曼(Aaron Hertzmann)的博客
- 大语言模型的黑暗风险|英国有线
- chatgpt,dall-e 2和创作过程的崩溃
- AI生成的艺术对人类创造力真正意味着什么|有线
- 预测对虚假宣传活动的语言模型的潜在滥用,以及如何降低风险
- AI Art的阴暗面:4个潜在的问题与不断增长的趋势
- 网络犯罪分子配备Chatgpt,建造恶意软件并绘制假女孩机器人
- CHATGPT和办公室工作的大规模生产 – 有远见
- chatgpt的危险没有人谈论|雅各布·费鲁斯(Jacob Ferus)| 12月,2022年|中等的
- 在元视频中控制心灵。如果我们对… |路易斯·罗森伯格(Louis Rosenberg)|预测| 12月,2022年|中等的
- Chatgpt的光彩和怪异 – 《纽约时报》
- Como o Texto Gerado porinteligência人造estáenvenando a Internet -MIT技术评论
- ochatgptéoommommo“侏罗纪公园” dainteligência人造
- Por Favor,Mais RacionalIdade E Menos Frenesi emRelaçãoAoChatgpt(第1部分DE 2)|由Cezar Taurion | 12月,2022年|中等的
- e se estivermos usando uma iapseudocientíficefica? -Diogo Cortiz
- 作为LiveLaçõesDaSensaçãoTecnológicaDe2023:o Chatgpt | iagora? | ÉpocaNegócios
- 7揭示AIS失败的方式-IEEE Spectrum
生成的AI过程和工件
更多信息
Generative AI是人工智能的一个分支,它重点是根据从现有数据中学到的模式创建新数据。这是该过程的分步说明:
-
从数据开始:每个生成AI过程都始于数据。这可以以各种形式,例如文本,图像,声音或其他数据集。该数据是AI用来识别和理解模式的基础材料。
-
培训AI :手头数据,下一步是“培训”。在此阶段,AI多次处理数据,以学习和内部化存在的模式。此阶段的结果是“模型”,它的作用就像是从数据中得出的知识的数字表示。
-
微调:有时,AI需要专注于特定的细微差别或特征。在这种情况下,一组数据用于“微调”已经训练的模型,从而在所需方向上增强了其功能。
-
使用模型:训练后,该模型准备进行推断,这意味着使用其获得的知识处理新数据并提出相关输出。该推论过程可以在机器上本地执行,也可以通过“ API”远程访问。本地执行和API访问之间的选择通常取决于计算资源,应用需求和用户偏好等因素。无论是在本地还是通过API,目标是利用模型的功能从新数据输入中得出有意义的结果。
-
生成新数据:通过设置模型,AI现在可以生成或“生成”新数据。通过给出AI某些“输入参数”或指南,它将以“生成的输出”返回,即新创建的内容。
-
应用程序:AI生成的输出可以合并到一系列应用程序中,无论是网站,移动应用程序还是其他数字平台。 “接口”是指这些应用程序的面向用户的部分,使用户能够与AI的功能进行交互并受益。
从本质上讲,生成的AI是关于馈送AI系统的大量数据,对其进行训练以掌握潜在的模式,然后利用训练有素的知识来产生新的数据。这项技术的潜在应用和好处是巨大的,随着场地的发展而继续增长。
生成AI工具目录
- AI演示制造商:数十个AI演示者的深入评论
- AI生产力工具
- toollist.ai:AI工具聚合器
- 工具:AI工具目录和AI工具列表
- LLM Explorer:策划的LLM列表。探索开源LLM型号的LLM列表
- Orbicai:“ Larget AI目录,GPT商店,AWS PartyRocks应用程序和许多免费的AI工具”
- 替代:“通往AI发现的门户”
- Ainave:“轻松地浏览AI的世界”,策划的AI工具和AI新闻
- AI搜索:查找AI工具和应用|搜索最完整的AI工具目录| AI搜索
- Aisupersmart AI工具目录:根据您的用例找到AI工具!
- 高清机器人:带聊天机器人助手的AI工具目录
- Aiforme:具有比较功能的AI工具发现平台
- Lablab中的技术:Lablab.ai建议的黑客马拉松列表
- Vondy-下一代AI应用程序:由任务组织的AI工具集合
- AI工具主列表:点击维护的目录
- AI山谷:“最新的AI工具和提示”
- AI Finder:具有1500多个AI工具的存储库
- BestWebbs:“所有AI工具的一站式目的地”
- 未来工具 – 找到满足您需求的确切AI工具:AI工具列表
- FuturePedia-最大的AI工具目录|主页:AI工具目录
- 有一个AI:AI数据库
- AI仓库 – 发现新的AI工具:标签组织并以卡格式呈现的AI工具的收集
- 生成AI数据库:具有类型,模型,扇区,URL和API的概念的数据库
- 交替 – 发现新的AI工具和产品的地方。
- 生成的AI景观:“一系列awesome generative ai应用程序”
- 创建者的AI工具的最终列表|描述:由描述组织
- Maxim AI:生成的AI评估和可观察性平台
- AI工具列表:AI工具的很棒目录
课程和教育材料
- 双子座以示例:通过(注释)代码示例学习双子座SDK。
- Niraj-lunavat/人工智能:具有+100 AI备忘单,免费在线书籍,顶级课程,最佳视频和讲座,最佳视频和讲座,论文,教程,教程,+99研究人员,高级网站,+121数据集,+121数据集,框架,框架,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,工具,
- NVIDIA解释的生成AI:NVIDIA的无编码课程,提出了生成的AI概念和应用,以及该领域的挑战和机遇
- Paulescu/动手-RL:免费课程,将您从零带到强化学习Pro ????
- Datacamp成为生成的AI开发人员系列:使用Langchain以及OpenAI和Pinecone API构建聊天机器人的9个代码,并与Hugging Face Ecosystem合作。免费,仅在有限的时间内。
- rasbt/llms-from-scratch:从头一步
- 生成AI的简介| SQILLPLAN:生成AI概论,包括诸如gans,差异自动编码器,自回归模型及其应用,评估,道德和挑战等模型
- UDLBOOK/UDLBOOK:了解Simon JD Prince教授的深度学习
- 书:了解深度学习:西蒙JD Prince的书草稿和Google Colabs网站
- AWS和Google的生成AI学习资源列表:列表Ankit Agarwal组织为LinkedIn帖子
- AI聊天机器人(例如Chatgpt或吟游诗人)如何工作 – Visual Explyer |监护人
- []初学者的生成AI:Microsoft的入门12课程课程
- Youssef Hosni的生成AI:一系列中型文章简介
- 动画AI:有关神经网络的动画和教学视频
- 深度学习AI-了解现实世界应用程序的生成AI的基本原理:与AWS合作创建,本课程介绍了生成AI的工作原理以及如何在现实世界应用程序中部署它的基本原理。
- Google Cloud技能提升 – 生成AI的简介:介绍性水平的微学习课程涵盖了Google工具,旨在解释生成AI是什么,使用方式以及与传统机器学习方法的不同之处。
- Google Cloud技能提升:生成AI学习路径:生成AI的策划内容“从大语言模型的基本原理到如何在Google Cloud上创建和部署生成的AI解决方案”
- AI工业设计:“新加坡国立大学的学生在一个学期课程中探索了AI的设计能力,并分享了他们学到的知识。
- 让我们向您展示GPT的工作原理 – 使用简·奥斯丁 – 《纽约时报》
- [] chatgpt提示开发人员的工程 – 深度学习。IA:由Isa Fulford(OpenAi)和Andrew Ng(DeepLearning.AI)教授的短期课程,这些课程为及时工程提供了最佳实践
- [] dair.ai:使人工智能研究,教育和技术民主化
- 欢迎参加?深钢筋学习课程:关于深入强化学习的拥抱面孔课程
- Prompthero的AI Art Generation速成课程:付费(99美元)课程,重点是及时工程
- 扩散模型和AI艺术的视觉直觉。 #StableDiffusionArt #aiart #aiartwork #aiartcommunity
- 杰伊·阿拉玛(Jay Alammar)的插图稳定扩散:“稳定扩散的工作方式,温和的引入[
- [] Johnowhitaker/TGLCourse:生成景观 – 生成建模课程(目前未完成)
- 单词是图像| BustBright-机器学习艺术:7周的在线课程,从2022年10月24日开始,德里克·舒尔茨(Derrick Schultz)
- grokking稳定扩散。IPYNB-合作式 – 第1部分:@johnowhitaker笔记本,探索稳定的扩散细节
- grokking稳定扩散:文本倒置.ipynb- colagoration-第2部分:续集grokking稳定扩散的@johnowhitaker,重点是文本反演
- GitHub -Johnowhitaker/Aiaiart:Aiaiart课程的课程内容和资源
- 稳定扩散的实现/教程,并由Labml.ai并排注释|叽叽喳喳
- 编码器的实践深度学习2023-第二部分:延续课程,重点是从头开始实施稳定扩散。
- 编码人员的实践深度学习2022-第一部分:“杰里米·霍华德
人类互动
- AI的UX:如何使用AI -Design工具为周二 – YouTube供电的人类体验
- 幕后设计:Microsoft Design与Copilot见面
- [] [2310.07127]以HCI为中心的人类相互作用的调查和分类法:“对154篇论文的调查,从人类和Gen-ai的角度提供了新的分类学和对人类与人类相互作用的分析”。
- 人类互动指南 – 微软研究:一组“ 18个通常适用人类的设计指南”相互作用
论文收集
- 纸摘要 – chatgpt:最近关于chatgpt的论文
- dair-ai/ml papers解释:对ML中的关键概念的解释
- AI阅读列表 – Google文档:杰克·索斯洛(Jack Soslow)组织的阅读列表(@JackSoslow)
- Aman的AI期刊•论文列表:Aman Chadha策划的开创性AI/ML论文集
- 休闲文章阅读俱乐部:休闲gan论文的社区知识库
- 休闲文章:易于阅读的流行AI论文摘要
- 插图的vqgan:关于VQGAN如何工作的插图说明
- 剪辑:连接文本和图像:Openai关于剪辑如何工作的解释
- vqgan+剪辑 – 它如何工作?综合图像(“ gan艺术”)场景…|由AlexaSteinbrück|中等的
- 方法语料库|用代码的论文
- https://ieeexplore.**i*eee.org/abstract/document/9043519:与生成对抗网络的图像合成有关的state-of-the-art评论
- UTILIZANDO REDESADVERSáriasGenerativas(Gans)Como Agente de apoio -diminsaçãoPara艺术家:Trabalho deGraduaçãodeCláudiocarvalho carvalho no Centro deInformática -Ufpe
- GAN LAB:在您的浏览器中使用生成的对抗网络播放!
- [PDF] Music2Video:与音频和文字融合的自动生成音乐视频|语义学者
- [pdf]生成深度学习的积极分歧 – 调查和分类法|语义学者
- [PDF]为艺术目的自动化生成深度学习:挑战和机遇|语义学者
在线工具和应用程序
- Lunroo:45+免费的社交媒体营销工具。使用AI节省您在常规任务上的时间。
- 计数:AI驱动的小型企业
- 竞争对手研究:帮助公司跟踪竞争对手的AI工具
- StartKit.ai:快速构建AI产品的样板
- 无代码刮板:没有代码的数据刮擦 – 只需几个简单输入即可从任何网站中无缝提取数据。
- BacklinkGPT: AI-powered link-building platform that helps you generate personalized outreach messages for faster link building.
- VocalReplica: AI-Powered Vocal and Instrumental Isolation for Your Favorite Tracks
- LangMagic: Learn languages from native content.
- Persuva: Persuva is the AI-driven platform to create persuasive, high-converting ad copy at scale.
- Dittto.ai: Fix your hero copy with an AI trained on top SaaS websites.
- SEOByAI: Rank Faster on Google with FREE AI SEO Tools
- SinglebaseCloud: AI-powered backend platform with Vector DB, DocumentDB, Auth, and more to speed up app development.
- TrollyAI: Create professional SEO articles, 2x faster
- WebscrapeAI: Scrape any website without code using AI
- Architecture Helper: Analyze any building architecture, and generate your own custom styles, in seconds.
- AI-Flow: Connect multiple AI models easily
- Code to Flow: Visualize, Analyze, and Understand Your Code flow. Turn Code into Interactive Flowcharts with AI. Simplify Complex Logic Instantly.
- Recast Studio: AI-powered podcast marketing assistant.
- Clipwing: A tool for cutting long videos into dozens of short clips.
- Tailor: Get a daily podcast and newsletter, created for you by an AI
- ZZZ Code AI: AI-powered free website to get any programming question answered or code generated.
- Scribble Diffusion: turn your sketch into a refined image using AI
- Paint by Text: Edit your photos using written instructions, with the help of an AI.
- Scenario AI: AI-generated game assets
- AnimalAI: custom AI-generated animal portraits (profits are directed to various wildlife conservation organizations)
- starryai: AI Art Generator App – AI Art Maker
- ProsePainter: an interactive tool to \”paint with words.\” It incorporates guidable text-to-image generation into a traditional digital painting interface
- ProsePainter: Image + Sketching Interface + CLIP! – YouTube
- Cocreator AI: creative computer agent (in wait list)
- Runway ML: AI video creation suite
- Hotpot.ai – Hotpot.ai: set of AI Tools to post-process images
- Toonify yourself by Justin Pinkney: turn a human face into a cartoon
- deepart.io: a online tool for applying style transfer
- Artbreeder: web-based tool to generate images by breeding existing images
- Ostagram.ru: image style transfer plataform
- cleanup.pictures: remove objects, people, text and defects from any picture for free
- remove.bg: remove background from images
- Quick, Draw!: can a neural network learn to recognize doodling? A game to help NL by adding users drawing
- Nekton.ai: automate your workflows with AI
- Documind.chat: Chat with PDF using AI. Documind is a powerful chat with pdf tool that lets you ask questions from your pdf documents.
- Snowpixel: Generate Images/Videos/Animations/Audio/Music/3D Objects with Text and/or Image. Upload your own data to create custom models.
- Chatpdf.so: Talk to PDF using GPT4 AI. Chatpdf.so is a chatpdf tool that lets you do question answering on your pdf documents.
- Yona.ai: Create deeply personalized AI chatbots from your own conversations, your stories, your data. You can harness the power of your chat history to build an AI companion for a nostalgic trip down memory lane, whimsical fantasies, or any other unique purpose.
- Voicesphere: Chat with your documents to get intelligent, context specific answers.
- Tune AI: AI chat app powered by open source models
- GPT Mobile GPT Mobile is an Android app that can chat with multiple LLMs at once! Currently supports ChatGPT, Anthropic Claude, and Google Gemini.
- PageGen – An AI Page Generator with Claude AI, React and Shadcn UI. Generate web pages from text, screenshot and templates with one click.
- PerchanceStory: PerchanceStory is an AI-based interactive story generator, which generates ever-changing story endings with endless possibilities based on simple user-provided input.
Code and Programming
Vibe Coding
- filipecalegario/awesome-vibe-coding: A curated list of vibe coding references, colaborating with AI to write code.
- Andrej Karpathy on X: \”There\’s a new kind of coding I call \”vibe coding\”, where you fully give in to the vibes, embrace exponentials, and forget that the code even exists.\”
- Windsurf Editor by Codeium: agentic IDE, \”where the work of developers and AI truly flow together, allowing for a coding experience that feels like literal magic\”
- Bolt.new: Prompt, run, edit, and deploy full-stack web and mobile apps.
- Lovable: \”Idea to app in seconds. Lovable is your superhuman full stack engineer.\”
- v0 by Vercel: assistant to build NextJS frontend
- Cursor: The AI Code Editor, \”the best way to code with AI\”
- Replit: \”Simply describe your idea above and let the Agent build it for you\”
AI-Powered Code Generation
- batchai: A supplement to Copilot and Cursor – utilizes AI for batch processing of project codes
- Archie: AI-Driven Product Architect that Designs and Plans Software Applications
- DhiWise: DhiWise is an app development platform that automates coding tasks, letting developers focus on core functionalities.
- New study on coding behavior raises questions about impact of AI on software development – GeekWire
- CostGPT: Software Development Cost Calculator: \”find the cost, time and the best tech stack for any kind of software, tools that you want to build using the power of AI\”
- codefuse-ai/Awesome-Code-LLM: a curated list of language modeling researches for code and related datasets.
- tldraw/draw-a-ui: draw a mockup and generate HTML for it
- deepseek-ai/DeepSeek-Coder: a tool that experiments the motto \”let the code write itself\”
- Cody: AI coding assistant
- Kombai: generate UI code per component from Figma
- geekan/MetaGPT: the multi-agent framework that, give one line requirement, return PRD, design, tasks, repo
- ZZZ Code AI: AI-powered free website to get any programming question answered or code generated.
- Rapidpages: create React & Tailwind landing pages using AI
- Teaching Programming in the Age of ChatGPT – O\’Reilly
- GPT Web App Generator: generates a webapp from a title, description, and other simple parameters
- wolfia-app/gpt-code-search: search a codebase with natural language using AI
- Dedicated File for Inbox for GenAI + Dev: a list for further analysis and organization of GenAI + dev references
- e2b-dev/e2b: \”Open-source platform for building AI-powered virtual software developers\”
- Metabob: Generative AI to improve and automate code reviews
- gventuri/pandas-ai: Pandas AI is a Python library that integrates LLMs capabilities into Pandas, making dataframes conversational
- A Systematic Evaluation of Large Language Models of Code: arxiv paper
- pgosar/ChatGDB: \”Harness the power of ChatGPT inside the GDB debugger\”
- The Impact of AI on Developer Productivity: Evidence from GitHub Copilot | arxiv
- openai/openai-cookbook: Examples and guides for using the OpenAI API
- Reduce costs when prompting using GPT
- Co-Developer GPT engine – local r/w file access and execute actions from an OpenAI GPT
- Potpie – Open Source AI Agents for your codebase in minutes. Use pre-built agents for Q&A, Testing, Debugging and System Design or create your own purpose-built agents.
文本
Everything to Markdown to LLMs
- bytedance/Dolphin: The official repo for “Dolphin: Document Image Parsing via Heterogeneous Anchor Prompting”, ACL, 2025.
- NuExtract 2.0 by NuMind: \”Outclassing Frontier LLMs in Information Extraction\”
- unclecode/crawl4ai: ? Crawl4AI: Open-source LLM Friendly Web Crawler & Scraper
- LLMSTXT.NEW: Generate consolidated text files from websites for LLM training and inference – Powered by Firecrawl
- Mistral OCR / Mistral AI: A document understanding API
- opendatalab/MinerU: A high-quality tool for convert PDF to Markdown and JSON
- microsoft/markitdown: Python tool for converting files and office documents to Markdown.
- docling-project/docling: get your documents ready for gen AI
- Firecrawl: Turn websites into LLM-ready data
- CatchTheTornado/text-extract-api: document (PDF, Word, PPTX …) extraction and parse API using OCRs + Ollama supported models. Anonymize documents. Remove PII. Convert any document or picture to structured JSON or Markdown
- R Jina: convert websites into Markdown by placing the URL in the search bar
- Gitingest: turn any Git repository into a simple text digest of its codebase.
- uithub: convert GitHub repositories into Markdown by placing the URL in the search bar
Small Language Models
- [2409.15790] Small Language Models: Survey, Measurements, and Insights
- [2402.17764] The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits
- mbzuai-oryx/MobiLlama: Small Language Model tailored for edge devices
Large Language Models (LLMs)
- lunary-ai/abso: TypeScript SDK to easily call 100+ LLMs using OpenAI\’s format
- oumi-ai/oumi: open universal machine intelligence, open-source platform that streamlines the entire lifecycle of foundation models – from data preparation and training to evaluation and deployment
- [] Transformer Explainer: LLM Transformer Model Visually Explained YouTube Video
- comet-ml/opik: Evaluate, test, and ship LLM applications with a suite of observability tools to calibrate language model outputs across your dev and production lifecycle.
- mendableai/firecrawl: Turn entire websites into LLM-ready markdown or structured data. Scrape, crawl and extract with a single API.
- QuivrHQ/MegaParse: File Parser optimised for LLM Ingestion with no loss. Parse PDFs, Docx, PPTx in a format that is ideal for LLMs.
- LiteLLM: a proxy server to manage auth, loadbalancing, and spend tracking across 100+ LLMs, all in the OpenAI format
- youssefHosni/Hands-On-LangChain-for-LLM-Applications-Development: Practical LangChain tutorials for LLM applications development
- unclecode/crawl4ai: Crawl4AI: Open-source LLM Friendly Web Crawler & Scrapper
- microsoft/LMOps: General technology for enabling AI capabilities w/ LLMs and MLLMs
- F*** You, Show Me The Prompt: quickly understand inscrutable LLM frameworks by intercepting API calls
- danielmiessler/fabric: fabric is an open-source framework for augmenting humans using AI. It provides a modular framework for solving specific problems using a crowdsourced set of AI prompts that can be used anywhere.
- Langfuse: Open source LLM engineering platform: Observability, metrics, evals, prompt management, playground, datasets. Integrates with LlamaIndex, Langchain, OpenAI SDK, LiteLLM, and more. #opensource
- naklecha/llama3-from-scratch: llama3 implementation one matrix multiplication at a time
- [2405.03825] Organizing a Society of Language Models: Structures and Mechanisms for Enhanced Collective Intelligence
- Open challenges in LLM research
- stanfordnlp/dspy: DSPy: The framework for programming — not prompting — foundation models
- Groq: service focused on fast inference speed, providing API access to Llama 2 70B-4K and Mixtral 8x7B-32K
- [] LLMLingua: Designing a Language for LLMs via Prompt Compression
- Floom AI gateway and marketplace for developers, enables streamlined integration of AI features into products
- rasbt/LLMs-from-scratch: Implementing a ChatGPT-like LLM from scratch, step by step
- GoogleCloudPlatform/generative-ai: Sample code and notebooks for Generative AI on Google Cloud
- LLM Visualization
- Automatic Hallucination detection with SelfCheckGPT NLI
- StreamingLLM gives language models unlimited context: giving language models unlimited context
- iusztinpaul/hands-on-llms: learn about LLMs, LLMOps, and vector DBs for free by designing, training, and deploying a real-time financial advisor LLM system ~ ?????? ???? + ????? & ??????? ?????????
- Practical Tips for Finetuning LLMs Using LoRA (Low-Rank Adaptation)
- Poe: a platform that lets people ask questions, get instant answers, and have back-and-forth conversations with a wide variety of AI-powered bots
- [2311.01555] Instruction Distillation Makes Large Language Models Efficient Zero-shot Rankers
- [] State of LLM Apps 2023 · Streamlit
- The architecture of today\’s LLM applications – The GitHub Blog
- Demystifying LLMs: How they can do things they weren\’t trained to do – The GitHub Blog
- How AI chatbots like ChatGPT or Bard work – visual explainer |监护人
- cpacker/MemGPT: teaching LLMs memory management for unbounded context [demo page] [arxiv]
- [2307.10169] Challenges and Applications of Large Language Models: a systematic set of open problems and application successes of LLM area
- Related resources from around the web | OpenAI Cookbook: tools and papers for improving outputs from GPT
- [] Patterns for Building LLM-based Systems & Products: \”practical patterns for integrating large language models (LLMs) into systems & products\” by Eugene Yan
- Hannibal046/Awesome-LLM: Awesome-LLM: a curated list of Large Language Model
- [2309.06794] Cognitive Mirage: A Review of Hallucinations in Large Language Models
- Generative AI for Strategy & Innovation: an experiment about management theories with ChatGPT by Harvard Business Review Italia
- The TextFX project: \”AI-powered tools for rappers, writers and wordsmiths\” (partnership between Lupe Fiasco and Google)
- A jargon-free explanation of how AI large language models work | Ars Technica
- [] What We Know About LLMs (Primer)
- A simple guide to fine-tuning Llama 2 | Brev docs
- microsoft/semantic-kernel: integrate cutting-edge LLM technology quickly and easily into your apps
- CoPrompt: platform for teams to use ChatGPT together
- [] Emerging Architectures for LLM Applications | Andreessen Horowitz: \”a reference architecture for the emerging LLM app stack\”
- Advanced Guide to ChatGPT: guide by Neatprompts.com
- Falcon LLM – Home: a foundational large language model (LLM) with 40 billion parameters trained on one trillion tokens shared by Technology Innovation Institute from Abu Dhabi
- [] The Hugging Face Open LLM Leaderboard: \”the ? Open LLM Leaderboard aims to track, rank and evaluate LLMs and chatbots as they are released\”
- google/BIG-bench: \”a collaborative benchmark intended to probe large language models and extrapolate their future capabilities\”
- togethercomputer/OpenChatKit: provides an open-source base to create both specialized and general purpose chatbots for various applications
- Paper Digest – ChatGPT: Recent Papers on ChatGPT
- Let Us Show You How GPT Works — Using Jane Austen – The New York Times
- Search-in-the-Chain: Towards Accurate, Credible and Traceable Large Language Models for Knowledge-intensive Tasks | arxiv: \”a novel framework called Search-in-the-Chain (SearChain) to improve the accuracy, credibility and traceability of LLM-generated content for multi-hop question answering\”
- [] Mooler0410/LLMsPracticalGuide: list of practical guide resources of LLMs based on the paper Harnessing the Power of LLMs in Practice: A Survey on ChatGPT and Beyond
- hpcaitech/ColossalAI: Making large AI models cheaper, faster and more accessible
- microsoft/LoRA: Code for loralib, an implementation of \”LoRA: Low-Rank Adaptation of Large Language Models\”s
- kyrolabs/awesome-langchain: ? Awesome list of tools and project with the awesome LangChain framework
- Stability AI Launches the First of its StableLM Suite of Language Models — Stability AI
- Free Dolly | The Databricks Blog: open source, instruction-following LLM, fine-tuned on a human-generated instruction dataset licensed for research and commercial use
- Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future of Large Language Models: paper with \”a comprehensive survey of ChatGPT and GPT-4 and their prospective applications across diverse domains\”
- lm-sys/FastChat: The release repo for \”Vicuna: An Open Chatbot Impressing GPT-4\” [demo]
- [] oobabooga/text-generation-webui: a gradio web UI for running Large Language Models like GPT-J 6B, OPT, GALACTICA, LLaMA, and Pygmalion
- Why LLaMa Is A Big Deal | Hackaday: post that discusses the impact of LLaMa and Alpaca in popularizing LLMs and even using them in small hardware devices
- logspace-ai/langflow: a UI for LangChain, designed with react-flow to provide an effortless way to experiment and prototype flows
- More than you\’ve asked for: A Comprehensive Analysis of Novel Prompt Injection Threats to Application-Integrated Large Language Models: paper on LLM Security
- Cohere AI: a way to integrate state-of-the-art language models to applications
- Langchain for paper summarization: using langchain to build a app for paper summarization
- Red-Teaming Large Language Models | Hugging Faces: strategies for testing LLMs against jailbreaks and attacks
- hwchase17/langchain: \”building applications with LLMs through composability\”
- Top Large Language Models (LLMs) in 2023 | MarkTechPost: list with large language models from diverse companies
- Godly: Instant context for GPT3
- GPTZero: \”Detect AI Plagiarism. Accurately\”
- GPT-3 Apps: GPT-3 Powered Micro Products (ex: cat namer, poet pocket, summarize)
- Inside language models (from GPT-3 to PaLM) – Dr Alan D. Thompson – Life Architect
- Google AI Blog: Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance
- DeepMind says its new language model can beat others 25 times its size | MIT Technology Review
- Integrated AI: How to talk to AI for free using nine platforms (Megatron, GPT-3, GPT-J, Wudao, J1..) – YouTube by Dr Alan D. Thompson. The following references came from this video description
- Haystack: framework for building applications with LLMs and Transformers (eg agents, semantic search, question-answering)
- SolidUI: AI-generated visualization prototyping and editing platform, support 2D, 3D models, combined with LLM(Large Language Model) for quick editing.
Model Context Protocol
- Introducing the Model Context Protocol \\ Anthropic
- an open standard that enables developers to build secure, two-way connections between their data sources and AI-powered tools.
- developers can either expose their data through MCP servers or build AI applications (MCP clients) that connect to these servers.
- Model Context Protocol: Model Context Protocol (MCP) is an open protocol that enables seamless integration between LLM applications and external data sources and tools.
- Introduction – Model Context Protocol
- Think of MCP like a USB-C port for AI applications.
- MCP helps you build agents and complex workflows on top of LLMs.
- 例子
- Example Servers – Model Context Protocol
- abhiz123/todoist-mcp-server: MCP server for Todoist integration enabling natural language task management with Claude
- List of Servers
- modelcontextprotocol/servers: Model Context Protocol Servers
- Awesome MCP Servers
- punkpeye/awesome-mcp-servers: A collection of MCP servers.
- Composio MCP Server: Connect Cursor, Windsurf, and Claude to 100+ fully managed MCP Servers with built-in auth
- These servers are built by the community and are hosted by Composio
- Example Clients – Model Context Protocol
- Building MCP with LLMs – Model Context Protocol
- Add Supabase to Cursor via MCP
- Building Agents with Model Context Protocol – Full Workshop with Mahesh Murag of Anthropic – YouTube: AI Engineer Summit workshop
- loopwork-ai/emcee: a tool that provides a Model Context Protocol (MCP) server for any web application with an OpenAPI specification.
- MCP Run: a registry of AI tools that can be developed by anyone and used inside any AI application
- modelcontextprotocol/inspector: Visual testing tool for MCP servers
Programming Frameworks for LLMs
- DSPy: Not Your Average Prompt Engineering: a post about the DSPy, a framework developed by the Stanford NLP group aimed at algorithmically optimizing language model prompts
- [] stanfordnlp/dspy: DSPy: The framework for programming — not prompting — foundation models
Prompt Engineering
- Narrow AI: Automated Prompt Engineering and Optimization Platform
- Anthropic\’s Prompt Engineering Interactive Tutorial
- ncwilson78/System-Prompt-Library: A library of shared system prompts for creating customized educational GPT agents.
- Promptstacks: a prompt engineering community
- Prompt engineering – OpenAI API: OpenAI\’s document with strategies and tactics for getting better results from large language models
- [2310.04438] A Brief History of Prompt: Leveraging Language Models: the paper presents an exploration of the evolution of prompt engineering. The author, Golam Md Muktadir, extensively used ChatGPT for content generation
- [2311.05661] Prompt Engineering a Prompt Engineer: this paper deals with the problem of \”constructing a meta-prompt that more effectively guides LLMs to perform automatic prompt engineering\”
- [2311.04155] Black-Box Prompt Optimization: Aligning Large Language Models without Model Training
- [] Prompt Engineering Roadmap – roadmap.sh
- [] Learn Prompting: series of lessons of prompt engineering
- [] Prompt Engineering | Lil\’Log: prompt engineering learning notes by Lilian Weng
- [] ChatGPT Prompt Engineering for Developers – DeepLearning.AI: short course taught by Isa Fulford (OpenAI) and Andrew Ng (DeepLearning.AI) that provide best practices for prompt engineering
- [] Prompt Engineering Guide: a project by DAIR.AI that intends to educate researchers and practitioners about prompt engineering
- the Book: collection of prompts and hints of prompt engineering
- dair-ai/Prompt-Engineering-Guide: Guide and resources for prompt engineering
Prompt Optimizers
- zou-group/textgrad: Automatic \”Differentiation\” via Text, using large language models to backpropagate textual gradients.
- [] stanfordnlp/dspy: DSPy: The framework for programming — not prompting — foundation models
- vaibkumr/prompt-optimizer: Minimize LLM token complexity to save API costs and model computations.
- PromptPerfect: \”Optimize Your Prompts to Perfection\”
- [] LLMLingua: Designing a Language for LLMs via Prompt Compression
Prompt Engineering for Text-to-text
- danielmiessler/fabric: fabric is an open-source framework for augmenting humans using AI. It provides a modular framework for solving specific problems using a crowdsourced set of AI prompts that can be used anywhere.
- ChatGPT for designers: ChatGPT Cheat Sheet V2 to craft better prompts
- [] [2307.11760] Large Language Models Understand and Can be Enhanced by Emotional Stimuli
- [] [2305.13252] \”According to …\” Prompting Language Models Improves Quoting from Pre-Training Data
- [] [2307.05300] Unleashing Cognitive Synergy in Large Language Models: A Task-Solving Agent through Multi-Persona Self-Collaboration
- timqian/openprompt.co: Create.使用。分享。 ChatGPT prompts
- 60 ChatGPT Prompts for Data Science (Tried, Tested, and Rated): post by Travis Tang from DataDrivenInvestor
- f/awesome-chatgpt-prompts: this repo includes ChatGPT prompt curation to use ChatGPT better
- brexhq/prompt-engineering: \”Tips and tricks for working with Large Language Models like OpenAI\’s GPT-4\”
- How to write an effective GPT-3 prompt | Zapier: a list of 6 GPT-3 tips for getting the desired output
- The Art of ChatGPT Prompting: A Guide to Crafting Clear and Effective Prompts: e-book by Fatih Kadir Akın (@fkadev)
Prompt Engineering for Text-to-image
- USP AI Prompt Book: Stable Diffusion v2.1 Prompt Book
- daspartho/prompt-extend: extending stable diffusion prompts with suitable style cues using text generation
- Prompt Box: \”organize and save your AI prompts\”
- Midjourney artist reference – Google Sheets
- Stable Diffusion Prompt Book — Stability.Ai: prompt book for Stable Diffusion v2.0 and v2.1 released by Stability.AI
- The Ultimate Stable Diffusion Prompt Guide by PromptHero
- CLIP Interrogator – a Hugging Face Space by pharma: image-to-text tool to figure out what a good prompt might be to create new images like an existing one
- [] Prompt book for data lovers II – Google Slides: An open source exploration on text-to-image and data visualization
- some9000/StylePile: A helper script for AUTOMATIC1111/stable-diffusion-webui. Basically a mix and match to quickly get different results without wasting a lot of time writing prompts.
- Artists To Study | All images generated with Google Colab TPUs + CompVis/stable-diffusion-v1-4 + Huggingface Diffusers: a systematic study of artists\’ styles made by @camenduru
- CLIP retrieval for laion5B: CLIP retrieval using Laion5B. \”It works by converting the text query to a CLIP embedding , then using that embedding to query a knn index of clip image embedddings\”.
- rom1504/clip-retrieval: Easily compute CLIP embeddings and build a CLIP retrieval system with them
- PromptDesign | Reddit: Reddit community for \”the art of communicating with natural language models\”
- Prompt Engineering and Zero-Shot/Few-Shot Learning [Guide] – inovex GmbH: prompt engineering for text generation
- clip-interrogator.ipynb – Colaboratory: a tool for image-to-prompt
- Useful Prompt Engineering tools and resources | reddit
- PromptHero: Search the best prompts for Stable Diffusion, DALL-E and Midjourney
- promptoMANIA: AI art community with prompt generator
- Lexica: search over 10M+ Stable Diffusion images and prompts
- list of artists for SD v1.4 AC / DI / JN / OZ
- succinctly/text2image-prompt-generator · Hugging Face: a GPT-2 model fine-tuned on the succinctly/midjourney-prompts dataset, which contains 250k text prompts that users issued to the Midjourney text-to-image service over a month period
- The Prompter | vicc | Substack: a newsletter about news, tips and thoughts around prompt engineering
- (19) Nikhil Agrawal ? on Twitter: 11 AI Images Prompt websites to level up the image quality
- Phraser: a tool that support prompt creation
- PromptBase | Prompt Marketplace: PromptBase is a marketplace for DALL·E, Midjourney & GPT-3 prompts, where people can sell prompts and make money from their prompt crafting skills.
- Professional AI whisperers have launched a marketplace for DALL-E prompts – The Verge
- Visual Prompt Builder: simple deck of illustrated card to combine modifiers for prompt building
- Prompt Engineering Template – Google Sheets: spreadsheet with lists of modifiers for prompt building and a lot of interesting links for reference
- Prompt Engineering: From Words to Art – Saxifrage Blog
- DALL·Ery GALL·Ery Resources: DALL·E 2 and AI art prompt resources & tools to inspire beautiful images
- [2204.13988] A Taxonomy of Prompt Modifiers for Text-To-Image Generation
- List of Aesthetics | Aesthetics Wiki |狂热
- Artist Directory (Volcano Comparison) | AI Art Creation Wiki |狂热
- The DALL·E 2 Prompt Book – DALL·Ery GALL·Ery
- DALL·Ery GALL·Ery: A guide to OpenAI\’s DALL·E – prompts, projects, examples, and tips
- (2) MASSIVE ? DALL-E 2 ANIME ⚡︎ KEYWORDS + MODIFIERS LIST ★ : haaaaven: image prompt modifier collection by haaaaven
- DrawBench: a list of prompts the Google Imagen is organizing as a benchmark
- CLIP Prompt Engineering for Generative Art – matthewmcateer.me: list of styles tested with Quick CLIP Guided Diffusion
- Adobe should make a boring app for prompt engineers (Interconnected)
- [2206.00169] Discovering the Hidden Vocabulary of DALLE-2
- When SD just doesn\’t understand the prompt no matter how hard I try | reddit
- It\’s very interesting how some prompts have very defined output but other specific ones are not | reddit
Mamba
- [2312.00752] Mamba: Linear-Time Sequence Modeling with Selective State Spaces: alternative to Transformer architecture.
- Mamba: A shallow dive into a new architecture for LLMs | by Geronimo (@geronimo7) | Dec, 2023 |中等的
- Mamba-Chat: A chat LLM based on the state-space model architecture
Running LLMs Locally
- llama.cpp guide: Running LLMs locally, on any hardware, from scratch
- PowerInfer: a high-speed inference engine for deploying LLMs locally
- [] Ollama: run Llama 2, Code Llama, and other models locally
- GPT4All: A free-to-use, locally running, privacy-aware chatbot. No GPU or internet is required.
- LM Studio: Discover, download, and run local LLMs
- ggerganov/llama.cpp: Port of Facebook\’s LLaMA model in C/C++
Function Calling
- Nexusflow/NexusRaven-V2-13B · Hugging Face: \”surpassing GPT-4 for Zero-shot Function Calling\”

