workflowr

2025-12-11 0 421

workflowr: organized + reproducible + shareable data science in R

The workflowr R package helps researchers organize their analyses in a way that
promotes effective project management, reproducibility, collaboration, and
sharing of results. Workflowr combines literate programming (knitr and
rmarkdown) and version control (Git, via git2r) to generate a website containing
time-stamped, versioned, and documented results. Any R user can quickly and
easily adopt workflowr.

For more details, see the online documentation. For an
example, see the Divvy data exploration project. To explore
reproducible research projects facilitated by workflowr, browse the projects
registered at workflowr.io. To keep up-to-date with the latest workflowr
developments, please join the workflowr-announce mailing list (low-volume,
read-only). For bugs reports, feature requests, and questions, please open an
Issue.

  • Features
  • Installation
  • Quick start
  • Attribution
  • Contributing

Features

  • Organized
    • Provides a project template with organized subdirectories
    • Mixes code and results with R Markdown
    • Uses Git to version both source code and results
  • Reproducible
    • Displays the code version used to create each result
    • Runs each analysis in an isolated R session
    • Records the session information of each analysis
    • Sets the same seed for random number generation for each analysis
  • Shareable
    • Creates a website to present your research results
    • Documents how to host your website for free via GitHub Pages or
      GitLab Pages
    • Creates links to past versions of results

To see a workflowr website in action, see this video demonstration.

For related tools, see r-project-workflows.

Installation

  1. Install R

    • (Recommended) Install RStudio

    • (Optional) Install pandoc (Instructions)

    • (Optional) Install Git

  2. Install workflowr from CRAN:

    install.packages(\"workflowr\")
  3. Create an account on GitHub or GitLab

Quick start

library(\"workflowr\")

# Configure Git (only need to do once per computer)
wflow_git_config(user.name = \"Full Name\", user.email = \"email@domain\")

# Start a new workflowr project
wflow_start(\"myproject\")

# Build the site
wflow_build()

# Customize your site!
#   1. Edit the R Markdown files in analysis/
#   2. Edit the theme and layout in analysis/_site.yml
#   3. Add new or copy existing R Markdown files to analysis/

# Preview your changes
wflow_build()

# Publish the site, i.e. version the source code and HTML results
wflow_publish(\"analysis/*\", \"Start my new project\")

Next steps:

  1. Read the full Getting started vignette to learn how to share
    your results online. Alternatively, you could read the Reproducible research
    workshop vignette. It covers the same steps, but includes example
    code and data to demonstrate some of workflowr\’s reproducibility features

  2. Read the customization vignette for ideas on how to customize
    your research website

  3. Read the migrating vignette for how to integrate workflowr
    into your existing project

Attribution

Workflowr was developed, and is maintained, by John Blischak, a postdoctoral
researcher in the laboratory of Matthew Stephens at The University
of Chicago. He is funded by a grant from the Gordon and Betty Moore
Foundation to MS. Peter Carbonetto and Matthew
Stephens are co-authors.

We are very thankful to workflowr contributors for helping improve the
package. We are also grateful for workflowr users for testing the package and
providing feedback—thanks especially to Lei Sun, Xiang
Zhu, Wei Wang, and other members (past and present) of
the Stephens lab.

The workflowr package uses many great open source packages. Especially critical
for this project are the R packages git2r, knitr, and rmarkdown.
Please see the vignette How the workflowr package works to learn
about the software that makes workflowr possible.

Workflowr is available under the MIT license. For proper attribution,
please cite our manuscript that describes the software:

Blischak JD, Carbonetto P, and Stephens M. Creating and sharing reproducible
research code the workflowr way [version 1; peer review: 3 approved].
F1000Research 2019, 8:1749 (https://doi**.or*g/10.12688/f1000research.20843.1)

To obtain a BibTeX entry, please run citation(\"workflowr\"). Note that
F1000Research publishes not only the original version but also any revisions. To
check for the latest version, please go to the paper\’s URL.

Contributing

We welcome community contributions, especially improvements to documentation. To
get started, please read the contributing guidelines.
Also, please note that this project is released with a Contributor Code of
Conduct. By participating in this project you agree to
abide by its terms.

下载源码

通过命令行克隆项目:

git clone https://github.com/workflowr/workflowr.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 建站资源 workflowr https://www.zuozi.net/34910.html

watchme
上一篇: watchme
go isatty
下一篇: go isatty
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务