diffusers

2025-12-11 0 856

? Diffusers is the go-to library for state-of-the-art pretrained diffusion models for generating images, audio, and even 3D structures of molecules. Whether you\’re looking for a simple inference solution or training your own diffusion models, ? Diffusers is a modular toolbox that supports both. Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions.

? Diffusers offers three core components:

  • State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code.
  • Interchangeable noise schedulers for different diffusion speeds and output quality.
  • Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems.

Installation

We recommend installing ? Diffusers in a virtual environment from PyPI or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.

PyTorch

With pip (official package):

pip install --upgrade diffusers[torch]

With conda (maintained by the community):

conda install -c conda-forge diffusers

Flax

With pip (official package):

pip install --upgrade diffusers[flax]

Apple Silicon (M1/M2) support

Please refer to the How to use Stable Diffusion in Apple Silicon guide.

Quickstart

Generating outputs is super easy with ? Diffusers. To generate an image from text, use the from_pretrained method to load any pretrained diffusion model (browse the Hub for 30,000+ checkpoints):

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained(\"stable-diffusion-v1-5/stable-diffusion-v1-5\", torch_dtype=torch.float16)
pipeline.to(\"cuda\")
pipeline(\"An image of a squirrel in Picasso style\").images[0]

You can also dig into the models and schedulers toolbox to build your own diffusion system:

from diffusers import DDPMScheduler, UNet2DModel
from PIL import Image
import torch

scheduler = DDPMScheduler.from_pretrained(\"google/ddpm-cat-256\")
model = UNet2DModel.from_pretrained(\"google/ddpm-cat-256\").to(\"cuda\")
scheduler.set_timesteps(50)

sample_size = model.config.sample_size
noise = torch.randn((1, 3, sample_size, sample_size), device=\"cuda\")
input = noise

for t in scheduler.timesteps:
    with torch.no_grad():
        noisy_residual = model(input, t).sample
        prev_noisy_sample = scheduler.step(noisy_residual, t, input).prev_sample
        input = prev_noisy_sample

image = (input / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
image = Image.fromarray((image * 255).round().astype(\"uint8\"))
image

Check out the Quickstart to launch your diffusion journey today!

How to navigate the documentation

Documentation What can I learn?
Tutorial A basic crash course for learning how to use the library\’s most important features like using models and schedulers to build your own diffusion system, and training your own diffusion model.
Loading Guides for how to load and configure all the components (pipelines, models, and schedulers) of the library, as well as how to use different schedulers.
Pipelines for inference Guides for how to use pipelines for different inference tasks, batched generation, controlling generated outputs and randomness, and how to contribute a pipeline to the library.
Optimization Guides for how to optimize your diffusion model to run faster and consume less memory.
Training Guides for how to train a diffusion model for different tasks with different training techniques.

Contribution

We ❤️ contributions from the open-source community!
If you want to contribute to this library, please check out our Contribution guide.
You can look out for issues you\’d like to tackle to contribute to the library.

  • See Good first issues for general opportunities to contribute
  • See New model/pipeline to contribute exciting new diffusion models / diffusion pipelines
  • See New scheduler

Also, say in our public Discord channel . We discuss the hottest trends about diffusion models, help each other with contributions, personal projects or just hang out ☕.

Popular Tasks & Pipelines

Task Pipeline ? Hub
Unconditional Image Generation DDPM google/ddpm-ema-church-256
Text-to-Image Stable Diffusion Text-to-Image stable-diffusion-v1-5/stable-diffusion-v1-5
Text-to-Image unCLIP kakaobrain/karlo-v1-alpha
Text-to-Image DeepFloyd IF DeepFloyd/IF-I-XL-v1.0
Text-to-Image Kandinsky kandinsky-community/kandinsky-2-2-decoder
Text-guided Image-to-Image ControlNet lllyasviel/sd-controlnet-canny
Text-guided Image-to-Image InstructPix2Pix timbrooks/instruct-pix2pix
Text-guided Image-to-Image Stable Diffusion Image-to-Image stable-diffusion-v1-5/stable-diffusion-v1-5
Text-guided Image Inpainting Stable Diffusion Inpainting runwayml/stable-diffusion-inpainting
Image Variation Stable Diffusion Image Variation lambdalabs/sd-image-variations-diffusers
Super Resolution Stable Diffusion Upscale stabilityai/stable-diffusion-x4-upscaler
Super Resolution Stable Diffusion Latent Upscale stabilityai/sd-x2-latent-upscaler

Popular libraries using ? Diffusers

  • https://git*hub.com**/microsoft/TaskMatrix
  • https://gi*th*u*b.com/invoke-ai/InvokeAI
  • https://gi*t**hub.com/InstantID/InstantID
  • https://git*h*u*b.com/apple/ml-stable-diffusion
  • https://githu*b*.*com/Sanster/lama-cleaner
  • https://*gi*thu*b.com/IDEA-Research/Grounded-Segment-Anything
  • https://gi*thu*b*.com/ashawkey/stable-dreamfusion
  • https://githu*b**.com/deep-floyd/IF
  • https://*gith*u*b.com/bentoml/BentoML
  • https://*githu*b.*com/bmaltais/kohya_ss
  • +14,000 other amazing GitHub repositories ?

Thank you for using us ❤️.

Credits

This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We\’d like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:

  • @CompVis\’ latent diffusion models library, available here
  • @hojonathanho original DDPM implementation, available here as well as the extremely useful translation into PyTorch by @pesser, available here
  • @ermongroup\’s DDIM implementation, available here
  • @yang-song\’s Score-VE and Score-VP implementations, available here

We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available here as well as @crowsonkb and @rromb for useful discussions and insights.

Citation

@misc{von-platen-etal-2022-diffusers,
  author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf},
  title = {Diffusers: State-of-the-art diffusion models},
  year = {2022},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\\url{https://github**.c*om/huggingface/diffusers}}
}

下载源码

通过命令行克隆项目:

git clone https://github.com/huggingface/diffusers.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 diffusers https://www.zuozi.net/34512.html

netron
上一篇: netron
下一篇:

已经没有下一篇了!

常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务