Real ESRGAN

2025-12-11 0 388

English | 简体中文

?Demos | Updates |Usage | ?Model Zoo | ?Install | Train | ❓FAQ | ?Contribution

AnimeVideo-v3 model (动漫视频小模型). Please see [anime video models] and [comparisons]
RealESRGAN_x4plus_anime_6B for anime images (动漫插图模型). Please see [anime_model]

  1. ? Update online Replicate demo:
  2. Online Colab demo for Real-ESRGAN: | Online Colab demo for for Real-ESRGAN (anime videos):
  3. Portable Windows / Linux / MacOS executable files for Intel/AMD/Nvidia GPU. You can find more information here. The ncnn implementation is in Real-ESRGAN-ncnn-vulkan

Real-ESRGAN aims at developing Practical Algorithms for General Image/Video Restoration.
We extend the powerful ESRGAN to a practical restoration application (namely, Real-ESRGAN), which is trained with pure synthetic data.

? Thanks for your valuable feedbacks/suggestions. All the feedbacks are updated in feedback.md.


If Real-ESRGAN is helpful, please help to this repo or recommend it to your friends ?
Other recommended projects:
▶️ GFPGAN: A practical algorithm for real-world face restoration
▶️ BasicSR: An open-source image and video restoration toolbox
▶️ facexlib: A collection that provides useful face-relation functions.
▶️ HandyView: A PyQt5-based image viewer that is handy for view and comparison
▶️ HandyFigure: Open source of paper figures


Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

[Paper]   [YouTube Video]   [B站讲解]   [Poster]   [PPT slides]
Xintao Wang, Liangbin Xie, Chao Dong, Ying Shan
Tencent ARC Lab; Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences


Updates

  • ✅ Add the realesr-general-x4v3 model – a tiny small model for general scenes. It also supports the -dn option to balance the noise (avoiding over-smooth results). -dn is short for denoising strength.
  • ✅ Update the RealESRGAN AnimeVideo-v3 model. Please see anime video models and comparisons for more details.
  • ✅ Add small models for anime videos. More details are in anime video models.
  • ✅ Add the ncnn implementation Real-ESRGAN-ncnn-vulkan.
  • ✅ Add RealESRGAN_x4plus_anime_6B.pth, which is optimized for anime images with much smaller model size. More details and comparisons with waifu2x are in anime_model.md
  • ✅ Support finetuning on your own data or paired data (i.e., finetuning ESRGAN). See here
  • ✅ Integrate GFPGAN to support face enhancement.
  • ✅ Integrated to Huggingface Spaces with Gradio. See Gradio Web Demo. Thanks @AK391
  • ✅ Support arbitrary scale with --outscale (It actually further resizes outputs with LANCZOS4). Add RealESRGAN_x2plus.pth model.
  • ✅ The inference code supports: 1) tile options; 2) images with alpha channel; 3) gray images; 4) 16-bit images.
  • ✅ The training codes have been released. A detailed guide can be found in Training.md.

? Demos Videos

Bilibili

  • 大闹天宫片段
  • Anime dance cut 动漫魔性舞蹈
  • 海贼王片段

YouTube

? Dependencies and Installation

  • Python >= 3.7 (Recommend to use Anaconda or Miniconda)
  • PyTorch >= 1.7

Installation

  1. Clone repo

    git clone https://git*hu*b*.com/xinntao/Real-ESRGAN.git
    cd Real-ESRGAN
  2. Install dependent packages

    # Install basicsr - https://gith*ub**.com/xinntao/BasicSR
    # We use BasicSR for both training and inference
    pip install basicsr
    # facexlib and gfpgan are for face enhancement
    pip install facexlib
    pip install gfpgan
    pip install -r requirements.txt
    python setup.py develop

⚡ Quick Inference

There are usually three ways to inference Real-ESRGAN.

  1. Online inference
  2. Portable executable files (NCNN)
  3. Python script

Online inference

  1. You can try in our website: ARC Demo (now only support RealESRGAN_x4plus_anime_6B)
  2. Colab Demo for Real-ESRGAN | Colab Demo for Real-ESRGAN (anime videos).

Portable executable files (NCNN)

You can download Windows / Linux / MacOS executable files for Intel/AMD/Nvidia GPU.

This executable file is portable and includes all the binaries and models required. No CUDA or PyTorch environment is needed.

You can simply run the following command (the Windows example, more information is in the README.md of each executable files):

./realesrgan-ncnn-vulkan.exe -i input.jpg -o output.png -n model_name

We have provided five models:

  1. realesrgan-x4plus (default)
  2. realesrnet-x4plus
  3. realesrgan-x4plus-anime (optimized for anime images, small model size)
  4. realesr-animevideov3 (animation video)

You can use the -n argument for other models, for example, ./realesrgan-ncnn-vulkan.exe -i input.jpg -o output.png -n realesrnet-x4plus

Usage of portable executable files

  1. Please refer to Real-ESRGAN-ncnn-vulkan for more details.
  2. Note that it does not support all the functions (such as outscale) as the python script inference_realesrgan.py.
Usage: realesrgan-ncnn-vulkan.exe -i infile -o outfile [options]...

  -h                   show this help
  -i input-path        input image path (jpg/png/webp) or directory
  -o output-path       output image path (jpg/png/webp) or directory
  -s scale             upscale ratio (can be 2, 3, 4. default=4)
  -t tile-size         tile size (>=32/0=auto, default=0) can be 0,0,0 for multi-gpu
  -m model-path        folder path to the pre-trained models. default=models
  -n model-name        model name (default=realesr-animevideov3, can be realesr-animevideov3 | realesrgan-x4plus | realesrgan-x4plus-anime | realesrnet-x4plus)
  -g gpu-id            gpu device to use (default=auto) can be 0,1,2 for multi-gpu
  -j load:proc:save    thread count for load/proc/save (default=1:2:2) can be 1:2,2,2:2 for multi-gpu
  -x                   enable tta mode\"
  -f format            output image format (jpg/png/webp, default=ext/png)
  -v                   verbose output

Note that it may introduce block inconsistency (and also generate slightly different results from the PyTorch implementation), because this executable file first crops the input image into several tiles, and then processes them separately, finally stitches together.

Python script

Usage of python script

  1. You can use X4 model for arbitrary output size with the argument outscale. The program will further perform cheap resize operation after the Real-ESRGAN output.
Usage: python inference_realesrgan.py -n RealESRGAN_x4plus -i infile -o outfile [options]...

A common command: python inference_realesrgan.py -n RealESRGAN_x4plus -i infile --outscale 3.5 --face_enhance

  -h                   show this help
  -i --input           Input image or folder. Default: inputs
  -o --output          Output folder. Default: results
  -n --model_name      Model name. Default: RealESRGAN_x4plus
  -s, --outscale       The final upsampling scale of the image. Default: 4
  --suffix             Suffix of the restored image. Default: out
  -t, --tile           Tile size, 0 for no tile during testing. Default: 0
  --face_enhance       Whether to use GFPGAN to enhance face. Default: False
  --fp32               Use fp32 precision during inference. Default: fp16 (half precision).
  --ext                Image extension. Options: auto | jpg | png, auto means using the same extension as inputs. Default: auto

Inference general images

Download pre-trained models: RealESRGAN_x4plus.pth

wget https://g*ithu*b.c*om/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P weights

Inference!

python inference_realesrgan.py -n RealESRGAN_x4plus -i inputs --face_enhance

Results are in the results folder

Inference anime images

Pre-trained models: RealESRGAN_x4plus_anime_6B
More details and comparisons with waifu2x are in anime_model.md

# download model
wget https://github.co**m*/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P weights
# inference
python inference_realesrgan.py -n RealESRGAN_x4plus_anime_6B -i inputs

Results are in the results folder


BibTeX

@InProceedings{wang2021realesrgan,
    author    = {Xintao Wang and Liangbin Xie and Chao Dong and Ying Shan},
    title     = {Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data},
    booktitle = {International Conference on Computer Vision Workshops (ICCVW)},
    date      = {2021}
}

? Contact

If you have any question, please email xintao.wang@outlook.com or xintaowang@tencent.com.

? Projects that use Real-ESRGAN

If you develop/use Real-ESRGAN in your projects, welcome to let me know.

  • NCNN-Android: RealSR-NCNN-Android by tumuyan
  • VapourSynth: vs-realesrgan by HolyWu
  • NCNN: Real-ESRGAN-ncnn-vulkan

    GUI

  • Waifu2x-Extension-GUI by AaronFeng753
  • Squirrel-RIFE by Justin62628
  • Real-GUI by scifx
  • Real-ESRGAN_GUI by net2cn
  • Real-ESRGAN-EGUI by WGzeyu
  • anime_upscaler by shangar21
  • Upscayl by Nayam Amarshe and TGS963

? Acknowledgement

Thanks for all the contributors.

  • AK391: Integrate RealESRGAN to Huggingface Spaces with Gradio. See Gradio Web Demo.
  • Asiimoviet: Translate the README.md to Chinese (中文).
  • 2ji3150: Thanks for the detailed and valuable feedbacks/suggestions.
  • Jared-02: Translate the Training.md to Chinese (中文).

下载源码

通过命令行克隆项目:

git clone https://github.com/xinntao/Real-ESRGAN.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 Real ESRGAN https://www.zuozi.net/34509.html

GFPGAN
上一篇: GFPGAN
fairseq
下一篇: fairseq
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务