Dive into DL TensorFlow2.0

2025-12-11 0 835

封面

项目将《动手学深度学习》 原书中MXNet代码实现改为TensorFlow2实现。经过archersama的导师咨询李沐老师,这个项目的实施已得到李沐老师的同意。原书作者:阿斯顿·张、李沐、扎卡里 C. 立顿、亚历山大 J. 斯莫拉以及其他社区贡献者,GitHub地址:https://gith*ub*.co*m/d2l-ai/d2l-zh

此书的中、英版本存在一些不同,本项目主要针对此书的中文版进行TensorFlow2重构。另外,本项目也参考了对此书中文版进行PyTorch重构的项目Dive-into-DL-PyTorch,在此表示感谢。

现已更新到十章,持续更新中。。。

项目已被机器之心等多家公众号报导,并且受到原作者李沐的认可

简介

本仓库主要包含code和docs两个文件夹(外加一些数据存放在data中)。其中code文件夹就是每章相关jupyter notebook代码(基于TensorFlow2);docs文件夹就是markdown格式的《动手学深度学习》书中的相关内容,然后利用docsify将网页文档部署到GitHub Pages上,由于原书使用的是MXNet框架,所以docs内容可能与原书略有不同,但是整体内容是一样的。欢迎对本项目做出贡献或提出issue。

面向人群

本项目面向对深度学习感兴趣,尤其是想使用TensorFlow2进行深度学习的童鞋。本项目并不要求你有任何深度学习或者机器学习的背景知识,你只需了解基础的数学和编程,如基础的线性代数、微分和概率,以及基础的Python编程。

食用方法

方法一

本仓库包含一些latex公式,但github的markdown原生是不支持公式显示的,而docs文件夹已经利用docsify被部署到了GitHub Pages上,所以查看文档最简便的方法就是直接访问本项目网页版。当然如果你还想跑一下运行相关代码的话还是得把本项目clone下来,然后运行code文件夹下相关代码。

方法二

你还可以在本地访问文档,先安装docsify-cli工具:

npm i docsify-cli -g

然后将本项目clone到本地:

git clone https://*git*hub.c*om/TrickyGo/Dive-into-DL-TensorFlow2.0
cd Dive-into-DL-TensorFlow2.0

然后运行一个本地服务器,这样就可以很方便的在http://localhost:3000实时访问文档网页渲染效果。

docsify serve docs

Contributors

这个项目的发起人及主要贡献者如下


archersama
(leader)

TrickyGo

SwordFaith

ShusenTang

LIANGQINGYUAN

目录

  • 简介
  • 阅读指南
  • 1. 深度学习简介
  • 2. 预备知识
    • 2.1 环境配置
    • 2.2 数据操作
    • 2.3 自动求梯度
    • 2.4 查阅文档
  • 3. 深度学习基础
    • 3.1 线性回归
    • 3.2 线性回归的从零开始实现
    • 3.3 线性回归的简洁实现
    • 3.4 softmax回归
    • 3.5 图像分类数据集(Fashion-MNIST)
    • 3.6 softmax回归的从零开始实现
    • 3.7 softmax回归的简洁实现
    • 3.8 多层感知机
    • 3.9 多层感知机的从零开始实现
    • 3.10 多层感知机的简洁实现
    • 3.11 模型选择、欠拟合和过拟合
    • 3.12 权重衰减
    • 3.13 丢弃法
    • 3.14 正向传播、反向传播和计算图
    • 3.15 数值稳定性和模型初始化
    • 3.16 实战Kaggle比赛:房价预测
  • 4. 深度学习计算
    • 4.1 模型构造
    • 4.2 模型参数的访问、初始化和共享
    • 4.3 模型参数的延后初始化
    • 4.4 自定义层
    • 4.5 读取和存储
    • 4.6 GPU计算
  • 5. 卷积神经网络
    • 5.1 二维卷积层
    • 5.2 填充和步幅
    • 5.3 多输入通道和多输出通道
    • 5.4 池化层
    • 5.5 卷积神经网络(LeNet)
    • 5.6 深度卷积神经网络(AlexNet)
    • 5.7 使用重复元素的网络(VGG)
    • 5.8 网络中的网络(NiN)
    • 5.9 含并行连结的网络(GoogLeNet)
    • 5.10 批量归一化
    • 5.11 残差网络(ResNet)
    • 5.12 稠密连接网络(DenseNet)
  • 6. 循环神经网络
    • 6.1 语言模型
    • 6.2 循环神经网络
    • 6.3 语言模型数据集(周杰伦专辑歌词)
    • 6.4 循环神经网络的从零开始实现
    • 6.5 循环神经网络的简洁实现
    • 6.6 通过时间反向传播
    • 6.7 门控循环单元(GRU)
    • 6.8 长短期记忆(LSTM)
    • 6.9 深度循环神经网络
    • 6.10 双向循环神经网络
  • 7. 优化算法
    • 7.1 优化与深度学习
    • 7.2 梯度下降和随机梯度下降
    • 7.3 小批量随机梯度下降
    • 7.4 动量法
    • 7.5 AdaGrad算法
    • 7.6 RMSProp算法
    • 7.7 AdaDelta算法
    • 7.8 Adam算法
  • 8. 计算性能
    • 8.1 命令式和符号式混合编程
    • 8.2 异步计算
    • 8.3 自动并行计算
    • 8.4 多GPU计算
  • 9. 计算机视觉
    • 9.1 图像增广
    • 9.2 微调
    • 9.3 目标检测和边界框
    • 9.4 锚框
    • 9.5 多尺度目标检测
    • 9.6 目标检测数据集(皮卡丘)
    • 9.8 区域卷积神经网络(R-CNN)系列
    • 9.9 语义分割和数据集
    • 9.10 全卷积网络(FCN)
    • 9.11 样式迁移
    • 9.12 实战Kaggle比赛:图像分类(CIFAR-10)
    • 9.13 实战Kaggle比赛:狗的品种识别(ImageNet Dogs)
  • 10. 自然语言处理
    • 10.1 词嵌入(word2vec)
    • 10.2 近似训练
    • 10.3 word2vec的实现
    • 10.4 子词嵌入(fastText)
    • 10.5 全局向量的词嵌入(GloVe)
    • 10.6 求近义词和类比词
    • 10.7 文本情感分类:使用循环神经网络
    • 10.8 文本情感分类:使用卷积神经网络(textCNN)
    • 10.9 编码器—解码器(seq2seq)
    • 10.10 束搜索
    • 10.11 注意力机制
    • 10.12 机器翻译
  • 11. 附录
    • 11.1 主要符号一览
    • 11.2 数学基础
    • 11.3 使用Jupyter记事本
    • 11.4 使用AWS运行代码
    • 11.5 GPU购买指南

持续更新中……

原书地址

中文版:动手学深度学习 | Github仓库
English Version: Dive into Deep Learning | Github Repo

引用

如果您在研究中使用了这个项目请引用原书:

@book{zhang2019dive,
    title={Dive into Deep Learning},
    author={Aston Zhang and Zachary C. Lipton and Mu Li and Alexander J. Smola},
    note={\\url{http://www.*d*2*l.ai}},
    year={2019}
}

下载源码

通过命令行克隆项目:

git clone https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 Dive into DL TensorFlow2.0 https://www.zuozi.net/34373.html

ea async
上一篇: ea async
example code 2e
下一篇: example code 2e
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务