Github
|
Docsify
简体中文
|
English
关于
本仓库是面向 C/C++ 技术方向校招求职者、初学者的基础知识总结,包括语言、程序库、数据结构、算法、系统、网络、链接装载库等知识及面试经验、招聘、内推等信息。
侧边目录支持方式: Docsify 文档、Github + TOC 导航(TOC预览.png)
? 保存为 PDF 方式:使用 Chrome 浏览器打开 Docsify 文档 页面,缩起左侧目录-右键 – 打印 – 选择目标打印机是另存为PDF – 保存(打印预览.png)
仓库内容如有错误或改进欢迎 issue 或 pr,建议或讨论可在 #12 提出。由于本人水平有限,仓库中的知识点有来自本人原创、读书笔记、书籍、博文等,非原创均已标明出处,如有遗漏,请 issue 提出。本仓库遵循 CC BY-NC-SA 4.0(署名 – 非商业性使用 – 相同方式共享) 协议,转载请注明出处,不得用于商业目的。
? 目录
- ➕ C/C++
- ️ Effective
- ? STL
- 〽️ 数据结构
- ⚡️ 算法
- ❓ Problems
- 操作系统
- ☁️ 计算机网络
- ? 网络编程
- ? 数据库
- ? 设计模式
- 链接装载库
- 书籍
- ? C/C++ 发展方向
- ? 复习刷题网站
- 面试题目经验
- ? 招聘时间岗位
- ? 内推
- ? 贡献者
- License
➕ C/C++
const
作用
- 修饰变量,说明该变量不可以被改变;
- 修饰指针,分为指向常量的指针(pointer to const)和自身是常量的指针(常量指针,const pointer);
- 修饰引用,指向常量的引用(reference to const),用于形参类型,即避免了拷贝,又避免了函数对值的修改;
- 修饰成员函数,说明该成员函数内不能修改成员变量。
const 的指针与引用
- 指针
- 指向常量的指针(pointer to const)
- 自身是常量的指针(常量指针,const pointer)
- 引用
- 指向常量的引用(reference to const)
- 没有 const reference,因为引用只是对象的别名,引用不是对象,不能用 const 修饰
(为了方便记忆可以想成)被 const 修饰(在 const 后面)的值不可改变,如下文使用例子中的
p2、p3
使用
const 使用
// 类 class A { private: const int a; // 常对象成员,可以使用初始化列表或者类内初始化 public: // 构造函数 A() : a(0) { }; A(int x) : a(x) { }; // 初始化列表 // const可用于对重载函数的区分 int getValue(); // 普通成员函数 int getValue() const; // 常成员函数,不得修改类中的任何数据成员的值 }; void function() { // 对象 A b; // 普通对象,可以调用全部成员函数 const A a; // 常对象,只能调用常成员函数 const A *p = &a; // 指针变量,指向常对象 const A &q = a; // 指向常对象的引用 // 指针 char greeting[] = \"Hello\"; char* p1 = greeting; // 指针变量,指向字符数组变量 const char* p2 = greeting; // 指针变量,指向字符数组常量(const 后面是 char,说明指向的字符(char)不可改变) char* const p3 = greeting; // 自身是常量的指针,指向字符数组变量(const 后面是 p3,说明 p3 指针自身不可改变) const char* const p4 = greeting; // 自身是常量的指针,指向字符数组常量 } // 函数 void function1(const int Var); // 传递过来的参数在函数内不可变 void function2(const char* Var); // 参数指针所指内容为常量 void function3(char* const Var); // 参数指针为常量 void function4(const int& Var); // 引用参数在函数内为常量 // 函数返回值 const int function5(); // 返回一个常数 const int* function6(); // 返回一个指向常量的指针变量,使用:const int *p = function6(); int* const function7(); // 返回一个指向变量的常指针,使用:int* const p = function7();
宏定义 #define 和 const 常量
| 宏定义 #define | const 常量 |
|---|---|
| 宏定义,相当于字符替换 | 常量声明 |
| 预处理器处理 | 编译器处理 |
| 无类型安全检查 | 有类型安全检查 |
| 不分配内存 | 要分配内存 |
| 存储在代码段 | 存储在数据段 |
可通过 #undef 取消 |
不可取消 |
static
作用
- 修饰普通变量,修改变量的存储区域和生命周期,使变量存储在静态区,在 main 函数运行前就分配了空间,如果有初始值就用初始值初始化它,如果没有初始值系统用默认值初始化它。
- 修饰普通函数,表明函数的作用范围,仅在定义该函数的文件内才能使用。在多人开发项目时,为了防止与他人命名空间里的函数重名,可以将函数定位为 static。
- 修饰成员变量,修饰成员变量使所有的对象只保存一个该变量,而且不需要生成对象就可以访问该成员。
- 修饰成员函数,修饰成员函数使得不需要生成对象就可以访问该函数,但是在 static 函数内不能访问非静态成员。
this 指针
this指针是一个隐含于每一个非静态成员函数中的特殊指针。它指向调用该成员函数的那个对象。- 当对一个对象调用成员函数时,编译程序先将对象的地址赋给
this指针,然后调用成员函数,每次成员函数存取数据成员时,都隐式使用this指针。 - 当一个成员函数被调用时,自动向它传递一个隐含的参数,该参数是一个指向这个成员函数所在的对象的指针。
this指针被隐含地声明为:ClassName *const this,这意味着不能给this指针赋值;在ClassName类的const成员函数中,this指针的类型为:const ClassName* const,这说明不能对this指针所指向的这种对象是不可修改的(即不能对这种对象的数据成员进行赋值操作);this并不是一个常规变量,而是个右值,所以不能取得this的地址(不能&this)。- 在以下场景中,经常需要显式引用
this指针:- 为实现对象的链式引用;
- 为避免对同一对象进行赋值操作;
- 在实现一些数据结构时,如
list。
inline 内联函数
特征
- 相当于把内联函数里面的内容写在调用内联函数处;
- 相当于不用执行进入函数的步骤,直接执行函数体;
- 相当于宏,却比宏多了类型检查,真正具有函数特性;
- 编译器一般不内联包含循环、递归、switch 等复杂操作的内联函数;
- 在类声明中定义的函数,除了虚函数的其他函数都会自动隐式地当成内联函数。
使用
inline 使用
// 声明1(加 inline,建议使用) inline int functionName(int first, int second,...); // 声明2(不加 inline) int functionName(int first, int second,...); // 定义 inline int functionName(int first, int second,...) {/****/}; // 类内定义,隐式内联 class A { int doA() { return 0; } // 隐式内联 } // 类外定义,需要显式内联 class A { int doA(); } inline int A::doA() { return 0; } // 需要显式内联
编译器对 inline 函数的处理步骤
- 将 inline 函数体复制到 inline 函数调用点处;
- 为所用 inline 函数中的局部变量分配内存空间;
- 将 inline 函数的的输入参数和返回值映射到调用方法的局部变量空间中;
- 如果 inline 函数有多个返回点,将其转变为 inline 函数代码块末尾的分支(使用 GOTO)。
优缺点
优点
- 内联函数同宏函数一样将在被调用处进行代码展开,省去了参数压栈、栈帧开辟与回收,结果返回等,从而提高程序运行速度。
- 内联函数相比宏函数来说,在代码展开时,会做安全检查或自动类型转换(同普通函数),而宏定义则不会。
- 在类中声明同时定义的成员函数,自动转化为内联函数,因此内联函数可以访问类的成员变量,宏定义则不能。
- 内联函数在运行时可调试,而宏定义不可以。
缺点
- 代码膨胀。内联是以代码膨胀(复制)为代价,消除函数调用带来的开销。如果执行函数体内代码的时间,相比于函数调用的开销较大,那么效率的收获会很少。另一方面,每一处内联函数的调用都要复制代码,将使程序的总代码量增大,消耗更多的内存空间。
- inline 函数无法随着函数库升级而升级。inline函数的改变需要重新编译,不像 non-inline 可以直接链接。
- 是否内联,程序员不可控。内联函数只是对编译器的建议,是否对函数内联,决定权在于编译器。
虚函数(virtual)可以是内联函数(inline)吗?
Are \”inline virtual\” member functions ever actually \”inlined\”?
- 虚函数可以是内联函数,内联是可以修饰虚函数的,但是当虚函数表现多态性的时候不能内联。
- 内联是在编译期建议编译器内联,而虚函数的多态性在运行期,编译器无法知道运行期调用哪个代码,因此虚函数表现为多态性时(运行期)不可以内联。
inline virtual唯一可以内联的时候是:编译器知道所调用的对象是哪个类(如Base::who()),这只有在编译器具有实际对象而不是对象的指针或引用时才会发生。
虚函数内联使用
#include <iostream> using namespace std; class Base { public: inline virtual void who() { cout << \"I am Base\\n\"; } virtual ~Base() {} }; class Derived : public Base { public: inline void who() // 不写inline时隐式内联 { cout << \"I am Derived\\n\"; } }; int main() { // 此处的虚函数 who(),是通过类(Base)的具体对象(b)来调用的,编译期间就能确定了,所以它可以是内联的,但最终是否内联取决于编译器。 Base b; b.who(); // 此处的虚函数是通过指针调用的,呈现多态性,需要在运行时期间才能确定,所以不能为内联。 Base *ptr = new Derived(); ptr->who(); // 因为Base有虚析构函数(virtual ~Base() {}),所以 delete 时,会先调用派生类(Derived)析构函数,再调用基类(Base)析构函数,防止内存泄漏。 delete ptr; ptr = nullptr; system(\"pause\"); return 0; }
volatile
volatile int i = 10;
- volatile 关键字是一种类型修饰符,用它声明的类型变量表示可以被某些编译器未知的因素(操作系统、硬件、其它线程等)更改。所以使用 volatile 告诉编译器不应对这样的对象进行优化。
- volatile 关键字声明的变量,每次访问时都必须从内存中取出值(没有被 volatile 修饰的变量,可能由于编译器的优化,从 CPU 寄存器中取值)
- const 可以是 volatile (如只读的状态寄存器)
- 指针可以是 volatile
assert()
断言,是宏,而非函数。assert 宏的原型定义在 <assert.h>(C)、<cassert>(C++)中,其作用是如果它的条件返回错误,则终止程序执行。可以通过定义 NDEBUG 来关闭 assert,但是需要在源代码的开头,include <assert.h> 之前。
assert() 使用
#define NDEBUG // 加上这行,则 assert 不可用 #include <assert.h> assert( p != NULL ); // assert 不可用
sizeof()
- sizeof 对数组,得到整个数组所占空间大小。
- sizeof 对指针,得到指针本身所占空间大小。
编译器扩展与标准对齐控制
- 编译器扩展:
#pragma pack(n),将随后定义的struct/class/union的成员最大对齐限制为 n 字节。 - 标准对齐控制:
alignas(k),要求类型或变量至少按 k 字节对齐(向上取整到 ≥ 自然对齐)。alignof(T),获取类型 T 的自然对齐要求(编译时常量)。
| 特性 | #pragma pack | alignas |
|---|---|---|
| 标准化 | 编译器扩展 | ✅ C++11标准 |
| 对齐方向 | 只能减小对齐 | ⬆️ 只能增大对齐 |
| 可移植性 | 编译器依赖 | ✅ 跨平台 |
| 作用范围 | 影响整个结构 | 可针对单个成员 |
| 性能影响 | ️ 可能降低内存访问速度 | ️ 过度对齐浪费空间 |
使用
#include <cstddef> #include <iostream> #pragma pack(push, 1) // 最大对齐 1 字节,紧凑布局 struct PackedHeader { uint16_t len; // offset 0 uint32_t id; // offset 2 }; #pragma pack(pop) struct alignas(8) Align8 { double value; // offset 0, 占 8 字节 int flag; // offset 8 }; int main() { std::cout << \"PackedHeader size: \" << sizeof(PackedHeader) << \"\\n\"; // 6 std::cout << \"Align8 size: \" << sizeof(Align8) << \"\\n\"; // 16 }
位域
Bit mode: 2; // mode 占 2 位
类可以将其(非静态)数据成员定义为位域(bit-field),在一个位域中含有一定数量的二进制位。当一个程序需要向其他程序或硬件设备传递二进制数据时,通常会用到位域。
- 位域在内存中的布局是与机器有关的
- 位域的类型必须是整型或枚举类型,带符号类型中的位域的行为将因具体实现而定
- 取地址运算符(&)不能作用于位域,任何指针都无法指向类的位域
extern 与 extern \”C\”
extern是存储类说明符(storage-class-specifier),用于声明变量或函数具有外部链接,表示实体的定义可能在其他翻译单元中。extern \"C\"是链接指示(linkage directive),它指定函数或变量使用 C 语言链接(不影响编译规则)。- 禁止 C++ 名称修饰。确保符号名称与该平台下 C 编译器生成的名称一致,避免链接时因名称修饰导致的未定义符号错误,但不保证平台 ABI(应用二进制接口)一致性。
- 实现 C/C++ 互操作。允许 C++ 函数被 C 代码调用(或反之)。
extern \"C\" 使用
#ifdef __cplusplus extern \"C\" { #endif void *memset(void *, int, size_t); #ifdef __cplusplus } #endif
struct 和 typedef struct
C 中
// c typedef struct Student { int age; } S;
等价于
// c struct Student { int age; }; typedef struct Student S;
此时 S 等价于 struct Student,但两个标识符名称空间不相同。
另外还可以定义与 struct Student 不冲突的 void Student() {}。
C++ 中
由于编译器定位符号的规则(搜索规则)改变,导致不同于C语言。
一、如果在类标识符空间定义了 struct Student {...};,使用 Student me; 时,编译器将搜索全局标识符表,Student 未找到,则在类标识符内搜索。
即表现为可以使用 Student 也可以使用 struct Student,如下:
// cpp struct Student { int age; }; void f( Student me ); // 正确,\"struct\" 关键字可省略
二、若定义了与 Student 同名函数之后,则 Student 只代表函数,不代表结构体,如下:
typedef struct Student { int age; } S; void Student() {} // 正确,定义后 \"Student\" 只代表此函数 //void S() {} // 错误,符号 \"S\" 已经被定义为一个 \"struct Student\" 的别名 int main() { Student(); struct Student me; // 或者 \"S me\"; return 0; }
C++ 中 struct 和 class
总的来说,struct 更适合看成是一个数据结构的实现体,class 更适合看成是一个对象的实现体。
区别
- 最本质的一个区别就是默认的访问控制
- 默认的继承访问权限。struct 是 public 的,class 是 private 的。
- struct 作为数据结构的实现体,它默认的数据访问控制是 public 的,而 class 作为对象的实现体,它默认的成员变量访问控制是 private 的。
union 联合
联合(union)是一种节省空间的特殊的类,一个 union 可以有多个数据成员,但是在任意时刻只有一个数据成员可以有值。当某个成员被赋值后其他成员变为未定义状态。联合有如下特点:
- 默认访问控制符为 public
- 可以含有构造函数、析构函数
- 不能含有引用类型的成员
- 不能继承自其他类,不能作为基类
- 不能含有虚函数
- 匿名 union 在定义所在作用域可直接访问 union 成员
- 匿名 union 不能包含 protected 成员或 private 成员
- 全局匿名联合必须是静态(static)的
union 使用
#include<iostream> union UnionTest { UnionTest() : i(10) {}; int i; double d; }; static union { int i; double d; }; int main() { UnionTest u; union { int i; double d; }; std::cout << u.i << std::endl; // 输出 UnionTest 联合的 10 ::i = 20; std::cout << ::i << std::endl; // 输出全局静态匿名联合的 20 i = 30; std::cout << i << std::endl; // 输出局部匿名联合的 30 return 0; }
C 实现 C++ 类
C 实现 C++ 的面向对象特性(封装、继承、多态)
- 封装:使用函数指针把属性与方法封装到结构体中
- 继承:结构体嵌套
- 多态:父类与子类方法的函数指针不同
Can you write object-oriented code in C? [closed]
explicit(显式)关键字
- explicit 修饰构造函数时,可以防止隐式转换和复制初始化
- explicit 修饰转换函数时,可以防止隐式转换,但 按语境转换 除外
explicit 使用
struct A { A(int) { } operator bool() const { return true; } }; struct B { explicit B(int) {} explicit operator bool() const { return true; } }; void doA(A a) {} void doB(B b) {} int main() { A a1(1); // OK:直接初始化 A a2 = 1; // OK:复制初始化 A a3{ 1 }; // OK:直接列表初始化 A a4 = { 1 }; // OK:复制列表初始化 A a5 = (A)1; // OK:允许 static_cast 的显式转换 doA(1); // OK:允许从 int 到 A 的隐式转换 if (a1); // OK:使用转换函数 A::operator bool() 的从 A 到 bool 的隐式转换 bool a6(a1); // OK:使用转换函数 A::operator bool() 的从 A 到 bool 的隐式转换 bool a7 = a1; // OK:使用转换函数 A::operator bool() 的从 A 到 bool 的隐式转换 bool a8 = static_cast<bool>(a1); // OK :static_cast 进行直接初始化 B b1(1); // OK:直接初始化 B b2 = 1; // 错误:被 explicit 修饰构造函数的对象不可以复制初始化 B b3{ 1 }; // OK:直接列表初始化 B b4 = { 1 }; // 错误:被 explicit 修饰构造函数的对象不可以复制列表初始化 B b5 = (B)1; // OK:允许 static_cast 的显式转换 doB(1); // 错误:被 explicit 修饰构造函数的对象不可以从 int 到 B 的隐式转换 if (b1); // OK:被 explicit 修饰转换函数 B::operator bool() 的对象可以从 B 到 bool 的按语境转换 bool b6(b1); // OK:被 explicit 修饰转换函数 B::operator bool() 的对象可以从 B 到 bool 的按语境转换 bool b7 = b1; // 错误:被 explicit 修饰转换函数 B::operator bool() 的对象不可以隐式转换 bool b8 = static_cast<bool>(b1); // OK:static_cast 进行直接初始化 return 0; }
friend 友元类和友元函数
- 能访问私有成员
- 破坏封装性
- 友元关系不可传递
- 友元关系的单向性
- 友元声明的形式及数量不受限制
using
using 声明
一条 using 声明 语句一次只引入命名空间的一个成员。它使得我们可以清楚知道程序中所引用的到底是哪个名字。如:
using namespace_name::name;
构造函数的 using 声明
在 C++11 中,派生类能够重用其直接基类定义的构造函数。
class Derived : Base { public: using Base::Base; /* ... */ };
如上 using 声明,对于基类的每个构造函数,编译器都生成一个与之对应(形参列表完全相同)的派生类构造函数。生成如下类型构造函数:
Derived(parms) : Base(args) { }
using 指示
using 指示 使得某个特定命名空间中所有名字都可见,这样我们就无需再为它们添加任何前缀限定符了。如:
using namespace namespace_name;
尽量少使用 using 指示 污染命名空间
一般说来,使用 using 命令比使用 using 编译命令更安全,这是由于它只导入了指定的名称。如果该名称与局部名称发生冲突,编译器将发出指示。using编译命令导入所有的名称,包括可能并不需要的名称。如果与局部名称发生冲突,则局部名称将覆盖名称空间版本,而编译器并不会发出警告。另外,名称空间的开放性意味着名称空间的名称可能分散在多个地方,这使得难以准确知道添加了哪些名称。
using 使用
尽量少使用 using 指示
using namespace std;
应该多使用 using 声明
int x;
std::cin >> x ;
std::cout << x << std::endl;
或者
using std::cin; using std::cout; using std::endl; int x; cin >> x; cout << x << endl;
:: 范围解析运算符
分类
- 全局作用域符(
::name):用于类型名称(类、类成员、成员函数、变量等)前,表示作用域为全局命名空间 - 类作用域符(
class::name):用于表示指定类型的作用域范围是具体某个类的 - 命名空间作用域符(
namespace::name):用于表示指定类型的作用域范围是具体某个命名空间的
:: 使用
int count = 11; // 全局(::)的 count class A { public: static int count; // 类 A 的 count(A::count) }; int A::count = 21; void fun() { int count = 31; // 初始化局部的 count 为 31 count = 32; // 设置局部的 count 的值为 32 } int main() { ::count = 12; // 测试 1:设置全局的 count 的值为 12 A::count = 22; // 测试 2:设置类 A 的 count 为 22 fun(); // 测试 3 return 0; }
enum 枚举类型
限定作用域的枚举类型
enum class open_modes { input, output, append };
不限定作用域的枚举类型
enum color { red, yellow, green }; enum { floatPrec = 6, doublePrec = 10 };
decltype
decltype 关键字用于检查实体的声明类型或表达式的类型及值分类。语法:
decltype ( expression )
decltype 使用
// 尾置返回允许我们在参数列表之后声明返回类型 template <typename It> auto fcn(It beg, It end) -> decltype(*beg) { // 处理序列 return *beg; // 返回序列中一个元素的引用 } // 为了使用模板参数成员,必须用 typename template <typename It> auto fcn2(It beg, It end) -> typename remove_reference<decltype(*beg)>::type { // 处理序列 return *beg; // 返回序列中一个元素的拷贝 }
引用
左值引用
常规引用,一般表示对象的身份。
右值引用
右值引用就是必须绑定到右值(一个临时对象、将要销毁的对象)的引用,一般表示对象的值。
右值引用可实现转移语义(Move Sementics)和精确传递(Perfect Forwarding),它的主要目的有两个方面:
- 消除两个对象交互时不必要的对象拷贝,节省运算存储资源,提高效率。
- 能够更简洁明确地定义泛型函数。
引用折叠
X& &、X& &&、X&& &可折叠成X&X&& &&可折叠成X&&
宏
- 宏定义可以实现类似于函数的功能,但是它终归不是函数,而宏定义中括弧中的“参数”也不是真的参数,在宏展开的时候对 “参数” 进行的是一对一的替换。
成员初始化列表
好处
- 更高效:少了一次调用默认构造函数的过程。
- 有些场合必须要用初始化列表:
- 常量成员,因为常量只能初始化不能赋值,所以必须放在初始化列表里面
- 引用类型,引用必须在定义的时候初始化,并且不能重新赋值,所以也要写在初始化列表里面
- 没有默认构造函数的类类型,因为使用初始化列表可以不必调用默认构造函数来初始化
initializer_list 列表初始化
用花括号初始化器列表初始化一个对象,其中对应构造函数接受一个 std::initializer_list 参数.
initializer_list 使用
#include <iostream>
#include <vector>
#include <initializer_list>template <class T>
struct S {
std::vector<T> v;
S(std::initializer_list<T> l) : v(l) {
std::cout << \"constructed with a \" << l.size() << \"-element list\\n\";
}
void append(std::initializer_list<T> l) {
v.insert(v.end(), l.begin(), l.end());
}
std::pair<const T*, std::size_t> c_arr() const {
return {&v[0], v.size()}; // 在 return 语句中复制列表初始化
// 这不使用 std::initializer_list
}
};template <typename T>
void templated_fn(T) {}int main()
{
S<int> s = {1, 2, 3, 4, 5}; // 复制初始化
s.append({6, 7, 8}); // 函数调用中的列表初始化std::cout << \"The vector size is now \" << s.c_arr().second << \" ints:\\n\";
for (auto n : s.v)
std::cout << n << \' \';
std::cout << \'\\n\';std::cout << \"Range-for over brace-init-list: \\n\";
for (int x : {-1, -2, -3}) // auto 的规则令此带范围 for 工作
std::cout << x << \' \';
std::cout << \'\\n\';auto al = {10, 11, 12}; <span class=\"pl
