kcp

2025-12-11 0 933

kcp – A Fast and Reliable ARQ Protocol

README in English

简介

kcp是一个快速可靠协议,能以比 TCP 浪费 10%-20% 的带宽的代价,换取平均延迟降低 30%-40%,且最大延迟降低三倍的传输效果。纯算法实现,并不负责底层协议(如UDP)的收发,需要使用者自己定义下层数据包的发送方式,以 callback的方式提供给 kcp。 连时钟都需要外部传递进来,内部不会有任何一次系统调用。

整个协议只有 ikcp.h, ikcp.c两个源文件,可以方便的集成到用户自己的协议栈中。也许你实现了一个P2P,或者某个基于 UDP的协议,而缺乏一套完善的ARQ可靠协议实现,那么简单的拷贝这两个文件到现有项目中,稍微编写两行代码,即可使用。

技术特性

TCP是为流量设计的(每秒内可以传输多少KB的数据),讲究的是充分利用带宽。而 kcp是为流速设计的(单个数据包从一端发送到一端需要多少时间),以10%-20%带宽浪费的代价换取了比 TCP快30%-40%的传输速度。TCP信道是一条流速很慢,但每秒流量很大的大运河,而kcp是水流湍急的小激流。kcp有正常模式和快速模式两种,通过以下策略达到提高流速的结果:

RTO翻倍vs不翻倍:

TCP超时计算是RTOx2,这样连续丢三次包就变成RTOx8了,十分恐怖,而kcp启动快速模式后不x2,只是x1.5(实验证明1.5这个值相对比较好),提高了传输速度。

选择性重传 vs 全部重传:

TCP丢包时会全部重传从丢的那个包开始以后的数据,kcp是选择性重传,只重传真正丢失的数据包。

快速重传:

发送端发送了1,2,3,4,5几个包,然后收到远端的ACK: 1, 3, 4, 5,当收到ACK3时,kcp知道2被跳过1次,收到ACK4时,知道2被跳过了2次,此时可以认为2号丢失,不用等超时,直接重传2号包,大大改善了丢包时的传输速度。

延迟ACK vs 非延迟ACK:

TCP为了充分利用带宽,延迟发送ACK(NODELAY都没用),这样超时计算会算出较大 RTT时间,延长了丢包时的判断过程。kcp的ACK是否延迟发送可以调节。

UNA vs ACK+UNA:

ARQ模型响应有两种,UNA(此编号前所有包已收到,如TCP)和ACK(该编号包已收到),光用UNA将导致全部重传,光用ACK则丢失成本太高,以往协议都是二选其一,而 kcp协议中,除去单独的 ACK包外,所有包都有UNA信息。

非退让流控:

kcp正常模式同TCP一样使用公平退让法则,即发送窗口大小由:发送缓存大小、接收端剩余接收缓存大小、丢包退让及慢启动这四要素决定。但传送及时性要求很高的小数据时,可选择通过配置跳过后两步,仅用前两项来控制发送频率。以牺牲部分公平性及带宽利用率之代价,换取了开着BT都能流畅传输的效果。

快速安装

您可以使用vcpkg库管理器下载并安装kcp:

git clone https://**gith*ub.com/Microsoft/vcpkg.git
cd vcpkg
./bootstrap-vcpkg.sh
./vcpkg integrate install
./vcpkg install kcp

vcpkg中的kcp库由Microsoft团队成员和社区贡献者保持最新状态。如果版本过时,请在vcpkg存储库上创建issue或提出PR。

基本使用

  1. 创建 kcp对象:

    // 初始化 kcp对象,conv为一个表示会话编号的整数,和tcp的 conv一样,通信双
    // 方需保证 conv相同,相互的数据包才能够被认可,user是一个给回调函数的指针
    ikcpcb *kcp = ikcp_create(conv, user);
  2. 设置回调函数:

    // kcp的下层协议输出函数,kcp需要发送数据时会调用它
    // buf/len 表示缓存和长度
    // user指针为 kcp对象创建时传入的值,用于区别多个 kcp对象
    int udp_output(const char *buf, int len, ikcpcb *kcp, void *user)
    {
      ....
    }
    // 设置回调函数
    kcp->output = udp_output;
  3. 循环调用 update:

    // 以一定频率调用 ikcp_update来更新 kcp状态,并且传入当前时钟(毫秒单位)
    // 如 10ms调用一次,或用 ikcp_check确定下次调用 update的时间不必每次调用
    ikcp_update(kcp, millisec);
  4. 输入一个下层数据包:

    // 收到一个下层数据包(比如UDP包)时需要调用:
    ikcp_input(kcp, received_udp_packet, received_udp_size);

    处理了下层协议的输出/输入后 kcp协议就可以正常工作了,使用 ikcp_send 来向
    远端发送数据。而另一端使用 ikcp_recv(kcp, ptr, size)来接收数据。

协议配置

协议默认模式是一个标准的 ARQ,需要通过配置打开各项加速开关:

  1. 工作模式:

    int ikcp_nodelay(ikcpcb *kcp, int nodelay, int interval, int resend, int nc)
    • nodelay :是否启用 nodelay模式,0不启用;1启用。
    • interval :协议内部工作的 interval,单位毫秒,比如 10ms或者 20ms
    • resend :快速重传模式,默认0关闭,可以设置2(2次ACK跨越将会直接重传)
    • nc :是否关闭流控,默认是0代表不关闭,1代表关闭。
    • 普通模式: ikcp_nodelay(kcp, 0, 40, 0, 0);
    • 极速模式: ikcp_nodelay(kcp, 1, 10, 2, 1);
  2. 最大窗口:

    int ikcp_wndsize(ikcpcb *kcp, int sndwnd, int rcvwnd);

    该调用将会设置协议的最大发送窗口和最大接收窗口大小,默认为32. 这个可以理解为 TCP的 SND_BUF 和 RCV_BUF,只不过单位不一样 SND/RCV_BUF 单位是字节,这个单位是包。

  3. 最大传输单元:

    纯算法协议并不负责探测 MTU,默认 mtu是1400字节,可以使用ikcp_setmtu来设置该值。该值将会影响数据包归并及分片时候的最大传输单元。

  4. 最小RTO:

    不管是 TCP还是 kcp计算 RTO时都有最小 RTO的限制,即便计算出来RTO为40ms,由于默认的 RTO是100ms,协议只有在100ms后才能检测到丢包,快速模式下为30ms,可以手动更改该值:

    kcp->rx_minrto = 10;

文档索引

协议的使用和配置都是很简单的,大部分情况看完上面的内容基本可以使用了。如果你需要进一步进行精细的控制,比如改变 kcp的内存分配器,或者你需要更有效的大规模调度 kcp链接(比如 3500个以上),或者如何更好的同 TCP结合,那么可以继续延伸阅读:

  • Wiki Home
  • kcp 最佳实践
  • 同现有TCP服务器集成
  • 传输数据加密
  • 应用层流量控制
  • 性能评测

开源案例

  • kcptun: 基于 kcp-go做的高速远程端口转发(隧道) ,配合ssh -D,可以比 shadowsocks 更流畅的看在线视频。
  • dog-tunnel: GO开发的网络隧道,使用 kcp极大的改进了传输速度,并移植了一份 GO版本 kcp
  • v2ray: 著名代理软件,Shadowsocks 代替者,1.17后集成了 kcp协议,使用UDP传输,无数据包特征。
  • HP-Socket: 高性能网络通信框架 HP-Socket。
  • frp: 高性能内网穿透的反向代理软件,可将将内网服务暴露映射到外网服务器。
  • asio-kcp: 使用 kcp的完整 UDP网络库,完整实现了基于 UDP的链接状态管理,会话控制,kcp协议调度等
  • kcp-java: Java版本 kcp协议实现。
  • kcp-netty: kcp的Java语言实现,基于netty。
  • java-kcp: JAVA版本kcp,基于netty实现(包含fec功能)
  • csharp-kcp: csharp版本kcp,基于dotNetty实现(包含fec功能)
  • kcp-cpp: kcp 的多平台(Windows、MacOS、Linux)C++ 实现作为应用程序中的简单库。包含适用于所有平台的套接字处理和辅助函数。
  • kcp-perl: kcp的Perl实现,其是面向对象的,Perl-Like的。
  • kcp-go: 高安全性的kcp的 GO语言实现,包含 UDP会话管理的简单实现,可以作为后续开发的基础库。
  • kcp-csharp: kcp的 csharp移植,同时包含一份回话管理,可以连接上面kcp-go的服务端。
  • kcp-csharp: 新版本 kcp的 csharp移植。线程安全,运行时无alloc,对gc无压力。
  • kcpTransport: kcp的csharp移植,实现了 Syn Cookie 握手、连接管理、不可靠通信、KeepAlive,未来还将支持加密。
  • kcp-CSharp: kcp的csharp移植,非托管包装器。
  • kcp2k: Line-by-line translation to C#, with optional Server/Client on top.
  • kcp-rs: kcp的 rust移植
  • kcp-rust:新版本 kcp的 rust 移植
  • tokio-kcp:rust tokio 的 kcp 集成
  • kcp-rust-native:rust 的 kcp bindings
  • lua-kcp: kcp的 Lua扩展,用于 Lua服务器
  • node-kcp: node-js 的 kcp 接口
  • nysocks: 基于libuv实现的node-addon,提供nodejs版本的代理服务,客户端接入支持SOCKS5和ss两种协议
  • shadowsocks-android: Shadowsocks for android 集成了 kcptun 使用 kcp协议加速 shadowsocks,效果不错
  • kcpuv: 使用 libuv开发的kcpuv库,目前还在 Demo阶段
  • Lantern:更好的 VPN,Github 50000 星,使用 kcpgo 加速
  • rpcx :RPC 框架,1000+ 星,使用 kcpgo 加速 RPC
  • xkcptun: c语言实现的kcptun,主要用于OpenWrt, LEDE开发的路由器项目上
  • et-frame: C#前后端框架(前端unity3d),统一用C#开发游戏,实现了前后端kcp协议
  • yasio: 一个跨平台专注于任意客户端程序的异步socket库, 易于使用,相同的API操作kcp/TCP/UDP, 性能测试结果: benchmark-pump.
  • gouxp: 用Go实现基于回调方式的kcp开发包,包含加解密和FEC支持,简单易用。
  • skcp: 基于libev实现的库,具备传输加密及基本的连接管理能力。
  • pykcp: Python 版本的 kcp 实现
  • php-ext-kcp: php 的 kcp 扩展
  • asio-kcp(new): c++的asio/kcp支持,支持asio协程等现代c++异步模型

商业案例

  • 原神:米哈游的《原神》使用 kcp 降低游戏消息的传输耗时,提升操作的体验。
  • SpatialOS: 大型多人分布式游戏服务端引擎,BigWorld 的后继者,使用 kcp 加速数据传输。
  • 西山居:使用 kcp 进行游戏数据加速。
  • CC:网易 CC 使用 kcp 加速视频推流,有效提高流畅性
  • BOBO:网易 BOBO 使用 kcp 加速主播推流
  • UU:网易 UU 加速器使用 kcp/kcpTUN 经行远程传输加速。
  • 阿里云:阿里云的视频传输加速服务 GRTN 使用 kcp 进行音视频数据传输优化,动态加速产品也使用 kcp。
  • 云帆加速:使用 kcp 加速文件传输和视频推流,优化了台湾主播推流的流畅度。
  • 明日帝国:Game K17 的 《明日帝国》 (Google Play),使用 kcp 加速游戏消息,让全球玩家流畅联网
  • 仙灵大作战:4399 的 MOBA游戏,使用 kcp 优化游戏同步

相关阅读:《原神》也在使用 kcp 加速游戏消息

kcp 成功的运行在多个用户规模上亿的项目上,为他们提供了更加灵敏和丝滑网络体验。

欢迎告知更多案例

协议比较

如果网络永远不卡,那 kcp/TCP 表现类似,但是网络本身就是不可靠的,丢包和抖动无法避免(否则还要各种可靠协议干嘛)。在内网这种几乎理想的环境里直接比较,大家都差不多,但是放到公网上,放到3G/4G网络情况下,或者使用内网丢包模拟,差距就很明显了。公网在高峰期有平均接近10%的丢包,wifi/3g/4g下更糟糕,这些都会让传输变卡。

感谢 asio-kcp 的作者 zhangyuan 对 kcp 与 enet, udt做过的一次横向评测,结论如下:

  • ASIO-kcp has good performace in wifi and phone network(3G, 4G).
  • The kcp is the first choice for realtime pvp game.
  • The lag is less than 1 second when network lag happen. 3 times better than enet when lag happen.
  • The enet is a good choice if your game allow 2 second lag.
  • UDT is a bad idea. It always sink into badly situation of more than serval seconds lag. And the recovery is not expected.
  • enet has the problem of lack of doc. And it has lots of functions that you may intrest.
  • kcp\’s doc is chinese. Good thing is the function detail which is writen in code is english. And you can use asio_kcp which is a good wrap.
  • The kcp is a simple thing. You will write more code if you want more feature.
  • UDT has a perfect doc. UDT may has more bug than others as I feeling.

具体见:横向比较 和 评测数据,为犹豫选择的人提供了更多指引。

大型多人游戏服务端引擎 SpatialOS 在集成 kcp 协议后做了同 TCP/RakNet 的评测:

对比了在服务端刷新率为 60 Hz 同时维护 50 个角色时的响应时间,详细对比报告见:

  • kcp a new low latency secure network stack

关于协议

近年来,网络游戏和各类社交网络都在成几何倍数的增长,不管网络游戏还是各类互动社交网络,交互性和复杂度都在迅速提高,都需要在极短的时间内将数据同时投递给大量用户,因此传输技术自然变为未来制约发展的一个重要因素,而开源界里各种著名的传输协议,如 raknet/enet 之类,一发布都是整套协议栈一起发布,这种形式是不利于多样化的,我的项目只能选择用或者不用你,很难选择 “部分用你”,然而你一套协议栈设计的再好,是非常难以满足不同角度的各种需求的。

因此 kcp 的方式是把协议栈 “拆开”,让大家可以根据项目需求进行灵活的调整和组装,你可以下面加一层 reed solomon 的纠删码做 FEC,上面加一层类 RC4/Salsa20 做流加密,握手处再设计一套非对称密钥交换,底层 UDP 传输层再做一套动态路由系统,同时探测多条路径,选最好路径进行传输。这些不同的 “协议单元” 可以像搭建积木一般根据需要自由组合,保证 “简单性” 和 “可拆分性”,这样才能灵活适配多变的业务需求,哪个模块不好,换了就是。

未来传输方面的解决方案必然是根据使用场景深度定制的,因此给大家一个可以自由组合的 “协议单元” ,方便大家集成在自己的协议栈中。

For more information, please see the Success Stories.

关于作者

作者:林伟 (skywind3000)

欢迎关注我的:个人博客 和 推特。

我在多年的开发经历中,一直都喜欢研究解决程序中的一些瓶颈问题,早年喜欢游戏开发,照着《VGA编程》来做游戏图形,读 Michael Abrash 的《图形程序开发人员指南》做软渲染器,爱好摆弄一些能够榨干 CPU 能够运行更快的代码,参加工作后,兴趣转移到服务端和网络相关的技术。

2007 年时做了几个传统游戏后开始研究快速动作游戏的同步问题,期间写过不少文章,算是国内比较早研究同步问题的人,然而发现不管怎么解决同步都需要在网络传输方面有所突破,后来离开游戏转行互联网后也发现不少领域有这方面的需求,于是开始花时间在网络传输这个领域上,尝试基于 UDP 实现一些保守的可靠协议,仿照 BSD Lite 4.4 的代码实现一些类 TCP 协议,觉得比较有意思,又接着实现一些 P2P 和动态路由网相关的玩具。kcp 协议诞生于 2011 年,基本算是自己传输方面做的几个玩具中的一个。

kcptun 的作者 xtaci 是我的大学同学,我俩都是学通信的,经常在一起研究如何进行传输优化。

欢迎捐赠

欢迎使用支付宝手扫描上面的二维码,对该项目进行捐赠。捐赠款项将用于持续优化 kcp协议以及完善文档。

感谢:明明、星仔、进、帆、颁钊、斌铨、晓丹、余争、虎、晟敢、徐玮、王川、赵刚强、胡知锋、万新朝、何新超、刘旸、侯宪辉、吴佩仪、华斌、如涛、胡坚。。。(早先的名单实在不好意思没记录下来)等同学的捐助与支持。

欢迎关注

kcp交流群:364933586(QQ群号),kcp集成,调优,网络传输以及相关技术讨论

Gitter 群:https://git*ter.im/**skywind3000/kcp

blog: http://www.sky**wi*nd.me

Contributors

This project exists thanks to all the people who contribute.

下载源码

通过命令行克隆项目:

git clone https://github.com/skywind3000/kcp.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 kcp https://www.zuozi.net/34243.html

MudBlazor
下一篇: MudBlazor
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务