flink

2025-12-10 0 585

Apache Flink

Apache Flink is an open source stream processing framework with powerful stream- and batch-processing capabilities.

Learn more about Flink at https://flink.a**p*ache.org/

Features

  • A streaming-first runtime that supports both batch processing and data streaming programs

  • Elegant and fluent APIs in Java

  • A runtime that supports very high throughput and low event latency at the same time

  • Support for event time and out-of-order processing in the DataStream API, based on the Dataflow Model

  • Flexible windowing (time, count, sessions, custom triggers) across different time semantics (event time, processing time)

  • Fault-tolerance with exactly-once processing guarantees

  • Natural back-pressure in streaming programs

  • Libraries for Graph processing (batch), Machine Learning (batch), and Complex Event Processing (streaming)

  • Custom memory management for efficient and robust switching between in-memory and out-of-core data processing algorithms

  • Compatibility layers for Apache Hadoop MapReduce

  • Integration with YARN, HDFS, HBase, and other components of the Apache Hadoop ecosystem

Streaming Example

// pojo class WordWithCount
public class WordWithCount {
    public String word;
    public int count;

    public WordWithCount() {}
    
    public WordWithCount(String word, int count) {
        this.word = word;
        this.count = count;
    }
}

// main method
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStreamSource<String> text = env.socketTextStream(host, port);
DataStream<WordWithCount> windowCounts = text
    .flatMap(
        (FlatMapFunction<String, String>) (line, collector) 
            -> Arrays.stream(line.split(\"\\\\s\")).forEach(collector::collect)
    ).returns(String.class)
    .map(word -> new WordWithCount(word, 1)).returns(TypeInformation.of(WordWithCount.class))
    .keyBy(wordWithCnt -> wordWithCnt.word)
    .window(TumblingProcessingTimeWindows.of(Duration.ofSeconds(5)))
    .sum(\"count\").returns(TypeInformation.of(WordWithCount.class));

windowCounts.print();
env.execute();
}

Batch Example

// pojo class WordWithCount
public class WordWithCount {
    public String word;
    public int count;

    public WordWithCount() {}

    public WordWithCount(String word, int count) {
        this.word = word;
        this.count = count;
    }
}

// main method
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setRuntimeMode(RuntimeExecutionMode.BATCH);
FileSource<String> source = FileSource.forRecordStreamFormat(new TextLineInputFormat(), new Path(\"MyInput.txt\")).build();
DataStreamSource<String> text = env.fromSource(source, WatermarkStrategy.noWatermarks(), \"MySource\");
DataStream<WordWithCount> windowCounts = text
        .flatMap((FlatMapFunction<String, String>) (line, collector) -> Arrays
                .stream(line.split(\"\\\\s\"))
                .forEach(collector::collect)).returns(String.class)
        .map(word -> new WordWithCount(word, 1)).returns(TypeInformation.of(WordWithCount.class))
        .keyBy(wordWintCount -> wordWintCount.word)
        .sum(\"count\").returns(TypeInformation.of(WordWithCount.class));

windowCounts.print();
env.execute();

Building Apache Flink from Source

Prerequisites for building Flink:

  • Unix-like environment (we use Linux, Mac OS X, Cygwin, WSL)
  • Git
  • Maven (we require version 3.8.6)
  • Java (version 11, 17, or 21)

Basic Build Instructions

First, clone the repository:

git clone https://**github.*com/apache/flink.git
cd flink

Then, choose one of the following commands based on your preferred Java version:

For Java 11

./mvnw clean package -DskipTests -Djdk11 -Pjava11-target

For Java 17 (Default)

./mvnw clean package -DskipTests -Djdk17 -Pjava17-target

For Java 21

./mvnw clean package -DskipTests -Djdk21 -Pjava21-target

The build process will take approximately 10 minutes to complete.
Flink will be installed in build-target.

Notes

  • Make sure your JAVA_HOME environment variable points to the correct JDK version
  • The build command uses Maven wrapper (mvnw) which ensures the correct Maven version is used
  • The -DskipTests flag skips running tests to speed up the build process
  • Each Java version requires its corresponding profile (-Pjava-target) and JDK flag (-Djdk)

Developing Flink

The Flink committers use IntelliJ IDEA to develop the Flink codebase.
We recommend IntelliJ IDEA for developing projects that involve Scala code.

Minimal requirements for an IDE are:

  • Support for Java and Scala (also mixed projects)
  • Support for Maven with Java and Scala

IntelliJ IDEA

The IntelliJ IDE supports Maven out of the box and offers a plugin for Scala development.

  • IntelliJ download: https://www.jet**b*rains.com/idea/
  • IntelliJ Scala Plugin: https://plugins.j*et*br*ains.com/plugin/?id=1347

Check out our Setting up IntelliJ guide for details.

Eclipse Scala IDE

NOTE: From our experience, this setup does not work with Flink
due to deficiencies of the old Eclipse version bundled with Scala IDE 3.0.3 or
due to version incompatibilities with the bundled Scala version in Scala IDE 4.4.1.

We recommend to use IntelliJ instead (see above)

Support

Don’t hesitate to ask!

Contact the developers and community on the mailing lists if you need any help.

Open an issue if you find a bug in Flink.

Documentation

The documentation of Apache Flink is located on the website: https://flink.*a*pa*che.org
or in the docs/ directory of the source code.

Fork and Contribute

This is an active open-source project. We are always open to people who want to use the system or contribute to it.
Contact us if you are looking for implementation tasks that fit your skills.
This article describes how to contribute to Apache Flink.

Externalized Connectors

Most Flink connectors have been externalized to individual repos under the Apache Software Foundation:

  • flink-connector-aws
  • flink-connector-cassandra
  • flink-connector-elasticsearch
  • flink-connector-gcp-pubsub
  • flink-connector-hbase
  • flink-connector-hive
  • flink-connector-jdbc
  • flink-connector-kafka
  • flink-connector-mongodb
  • flink-connector-opensearch
  • flink-connector-prometheus
  • flink-connector-pulsar
  • flink-connector-rabbitmq

About

Apache Flink is an open source project of The Apache Software Foundation (ASF).
The Apache Flink project originated from the Stratosphere research project.

下载源码

通过命令行克隆项目:

git clone https://github.com/apache/flink.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 flink https://www.zuozi.net/33730.html

toBeTopJavaer
上一篇: toBeTopJavaer
win brute logon
下一篇: win brute logon
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务