deeplearning4j

2025-12-10 0 676

The Eclipse Deeplearning4J (DL4J) ecosystem is a set of projects intended to support all the needs of a JVM based deep learning application. This means starting with the raw data, loading and preprocessing it from wherever and whatever format it is in to building and tuning a wide variety of simple and complex deep learning networks.

Because Deeplearning4J runs on the JVM you can use it with a wide variety of JVM based languages other than Java, like Scala, Kotlin, Clojure and many more.

The DL4J stack comprises of:

  • DL4J: High level API to build MultiLayerNetworks and ComputationGraphs with a variety of layers, including custom ones. Supports importing Keras models from h5, including tf.keras models (as of 1.0.0-beta7) and also supports distributed training on Apache Spark
  • ND4J: General purpose linear algebra library with over 500 mathematical, linear algebra and deep learning operations. ND4J is based on the highly-optimized C++ codebase LibND4J that provides CPU (AVX2/512) and GPU (CUDA) support and acceleration by libraries such as OpenBLAS, OneDNN (MKL-DNN), cuDNN, cuBLAS, etc
  • SameDiff : Part of the ND4J library, SameDiff is our automatic differentiation / deep learning framework. SameDiff uses a graph-based (define then run) approach, similar to TensorFlow graph mode. Eager graph (TensorFlow 2.x eager/PyTorch) graph execution is planned. SameDiff supports importing TensorFlow frozen model format .pb (protobuf) models. Import for ONNX, TensorFlow SavedModel and Keras models are planned. Deeplearning4j also has full SameDiff support for easily writing custom layers and loss functions.
  • DataVec: ETL for machine learning data in a wide variety of formats and files (HDFS, Spark, Images, Video, Audio, CSV, Excel etc)
  • LibND4J : C++ library that underpins everything. For more information on how the JVM acceses native arrays and operations refer to JavaCPP
  • Python4J: Bundled cpython execution for the JVM

All projects in the DL4J ecosystem support Windows, Linux and macOS. Hardware support includes CUDA GPUs (10.0, 10.1, 10.2 except OSX), x86 CPU (x86_64, avx2, avx512), ARM CPU (arm, arm64, armhf) and PowerPC (ppc64le).

Community Support

For support for the project, please go over to https://community.kon*d**uit.ai/

Using Eclipse Deeplearning4J in your project

Deeplearning4J has quite a few dependencies. For this reason we only support usage with a build tool.

<dependencies>
  <dependency>
      <groupId>org.eclipse.deeplearning4j</groupId>
      <artifactId>deeplearning4j-core</artifactId>
      <version>1.0.0-M2.1</version>
  </dependency>
  <dependency>
      <groupId>org.eclipse.deeplearning4j</groupId>
      <artifactId>nd4j-native-platform</artifactId>
      <version>1.0.0-M2.1</version>
  </dependency>
</dependencies>

Add these dependencies to your pom.xml file to use Deeplearning4J with the CPU backend. A full standalone project example is available in the example repository, if you want to start a new Maven project from scratch.

Code samples

Due to DL4J being a multi faceted project
with several modules in the mono repo, we recommend looking at the examples
for a taste of different usages of the different modules. Below
we\’ll link to examples for each module.

  1. ND4J: https://g*it*hub.*com/deeplearning4j/deeplearning4j-examples/tree/master/nd4j-ndarray-examples
  2. DL4J: https://githu*b.*com*/deeplearning4j/deeplearning4j-examples/tree/master/dl4j-examples
  3. Samediff: https://g*ith*ub.com*/deeplearning4j/deeplearning4j-examples/tree/master/samediff-examples
  4. Datavec: https://*gi*thub.c*om/deeplearning4j/deeplearning4j-examples/tree/master/data-pipeline-examples
  5. Python4j: https://deeplearning4j.ko*nd**uit.ai/python4j/tutorials/quickstart

For users looking for being able to run models from other frameworks, see:

  1. Onnx: https://gith**ub.com*/deeplearning4j/deeplearning4j-examples/tree/master/onnx-import-examples
  2. Tensorflow/Keras: https://*g*i*thub.com/deeplearning4j/deeplearning4j-examples/tree/master/tensorflow-keras-import-examples

Documentation, Guides and Tutorials

You can find the official documentation for Deeplearning4J and the other libraries of its ecosystem at http://deeplearning4j.*ko*nd*uit.ai/.

Want some examples?

We have separate repository with various examples available: https://*git*hu*b.com/eclipse/deeplearning4j-examples

Building from source

It is preferred to use the official pre-compiled releases (see above). But if you want to build from source, first take a look at the prerequisites for building from source here: https://deeplearning4j.kon***duit.ai/multi-project/how-to-guides/build-from-source. Various instructions for cpu and gpu builds can be found there. Please go to our forums for further help.

Running tests

In order to run tests, please see the platform-tests module.
This module only runs on jdk 11 (mostly due to spark and bugs with older scala versions + JDK 17)

platform-tests allows you to run dl4j for different backends.
There are a few properties you can specify on the command line:

  1. backend.artifactId: this defaults to nd4j-native and will run tests on cpu,you can specify other backends like nd4j-cuda-11.6
  2. dl4j.version: You can change the dl4j version that the tests run against. This defaults to 1.0.0-SNAPSHOT.

More parameters can be found here:

deeplearning4j/platform-tests/pom.xml

Line 47
in
c1bf871

<platform.classifier>${javacpp.platform}</platform.classifier>

Running project in Intellij IDEA:

  1. Ensure you follow https://*st*ackove*rflow.com/questions/45370178/exporting-a-package-from-system-module-is-not-allowed-with-release on jdk 9 or later
  2. Ignore all nd4j-shade submodules. Right click on each folder and click: Maven -> Ignore project

License

Apache License 2.0

Commercial Support

Deeplearning4J is actively developed by the team at Konduit K.K..

[If you need any commercial support feel free to reach out to us. at support@konduit.ai

下载源码

通过命令行克隆项目:

git clone https://github.com/deeplearning4j/deeplearning4j.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 deeplearning4j https://www.zuozi.net/33640.html

supertokens core
上一篇: supertokens core
brookframework
下一篇: brookframework
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务