manticoresearch

2025-12-10 0 750

Easy to use open source fast database for search

Manticore Search is an easy-to-use, open-source, and fast database designed for search. It is a great alternative to Elasticsearch.

Website •
 Downloads •
 Docs •
 Blog •
 Courses •
 Forum •
 Slack •
 Telegram (En) •
 Telegram (Ru) •
 Twitter •
 User feedback

Introduction

❗Read recent blog post about Manticore vs Elasticsearch❗

What distinguishes it from other solutions is:

  • It\’s very fast and therefore more cost-efficient than alternatives, for example Manticore is:

    • 182x faster than MySQL for small data (reproducible❗)

    • 29x faster than Elasticsearch for log analytics (reproducible❗)

    • 15x faster than Elasticsearch for small dataset (reproducible❗)

    • 5x faster than Elasticsearch for medium-size data (reproducible❗)

    • 4x faster than Elasticsearch for big data (reproducible❗)

    • up to 2x faster max throughput than Elasticsearch\’s for data ingestion on a single server (reproducible❗)

  • With its modern multithreading architecture and efficient query parallelization capabilities, Manticore is able to fully utilize all your CPU cores to achieve the quickest response times possible.

  • The powerful and speedy full-text search works seamlessly with both small and large datasets.

  • Row-wise storage for small, medium and big size datasets.

  • For even larger datasets, Manticore offers columnar storage support through the Manticore Columnar Library, capable of handling datasets too big to fit in RAM.

  • Performant secondary indexes are automatically created using the PGM-index (Piecewise Geometric Model index), which provides efficient mapping between indexed keys and their memory locations.

  • The cost-based query optimizer uses statistical data about indexed data to evaluate and determine the most efficient execution plan.

  • Manticore is SQL-first, utilizing SQL as its native syntax, and offers compatibility with the MySQL protocol, allowing you to use your preferred MySQL client.

  • With clients available in PHP, Python, Python asyncio JavaScript, Typescript, Java, Elixir, Go, and Rust, integration with Manticore Search becomes easy.

  • Manticore also provides a programmatic HTTP JSON protocol for more versatile data and schema management, with Elasticsearch-compatible writes support.

  • Built in C++, Manticore Search starts quickly and uses minimal RAM (around 40MB RSS for an empty instance), with low-level optimizations contributing to its impressive performance.

  • With real-time inserts, newly added or updated documents are immediately accessible.

  • Interactive courses are available through Interactive courses to make learning a breeze.

  • Manticore also boasts built-in virtually synchronous multi-master replication using the Galera library and load balancing capabilities.

  • Data can be synced from sources such as MySQL, PostgreSQL, ODBC, xml, and csv with ease.

  • While not fully ACID-compliant, Manticore supports isolated transactions and binary logging for safe writes.

  • Effortless data backup and recovery with built-in tools like manticore-backup and SQL BACKUP command

Craigslist, Socialgist, PubChem, Rozetka and many others use Manticore for efficient searching and stream filtering.

Manticore Search was forked from Sphinx 2.3.2 in 2017.

More features

  • Full-text search and relevance:

    • Over 20 full-text operators and over 20 ranking factors

    • Custom ranking

  • Other search capabilities:

    • Rich filtering functionality

    • Fuzzy search

    • Faceted search

    • Geo-spatial search

    • Vector search

    • Joining tables

    • Spelling correction

    • Autocomplete

    • A wide range of functions for filtering and data manipulation

  • Natural language processing (NLP):

    • Stemming

    • Lemmatization

    • Stopwords

    • Synonyms

    • Wordforms

    • Advanced tokenization at character and word level

    • Proper Chinese segmentation

    • Text highlighting

  • Stream filtering:

    • using a \”percolate\” table

    • or the Kafka integration

  • High-availability:

    • Data can be distributed across servers and data-centers

    • Synchronous replication

    • Built-in load balancing

  • Security:

    • https support

    • read-only mode

  • Data safety:

    • manticore-backup tool and SQL command BACKUP to back up and restore your data

  • Data storages:

    • row-wise – requires more RAM, provides faster performance

    • columnar – requires less RAM, still provides decent performance, but lower than the row-wise storage for some kinds of queries

    • docstore – doesn\’t require RAM at all, but allows only fetching original value, not sorting/grouping/filtering

  • Performance optimizations:

    • Secondary indexes

    • Cost-based optimizer determines the most efficient execution plan of a search query

  • Data types:

    • full-text field – inverted index

    • int, bigint and float numeric fields in row-wise and columnar fashion

    • multi-value attributes (array)

    • string and JSON

    • on-disk \”stored\” for key-value purpose

  • Integrations:

    • Sync from MySQL and PostgreSQL

    • Sync from XML

    • Sync from CSV

    • Sync from ODBC

    • Sync from MS SQL

    • Sync from Kafka

    • With MySQL as a storage engine

    • With MySQL via FEDERATED engine

    • ProxySQL

    • Apache Superset

    • Grafana

    • Fluentbit

    • Kibana (Demo)

    • Logstash/Filebeat

    • Vector.dev

    • Mysqldump

    • Manticore Columnar Library

Installation

Docker

Docker image is available on Docker Hub.

To experiment with Manticore Search in Docker just run:

docker run --name manticore --rm -d manticoresearch/manticore && until docker logs manticore 2>&1 | grep -q \"accepting connections\"; do sleep 1; done && docker exec -it manticore mysql && docker stop manticore

You can then: create a table, add data and run searches. For example:

create table movies(title text, year int) morphology=\'stem_en\' html_strip=\'1\' stopwords=\'en\';

insert into movies(title, year) values (\'The Seven Samurai\', 1954), (\'Bonnie and Clyde\', 1954), (\'Reservoir Dogs\', 1992), (\'Airplane!\', 1980), (\'Raging Bull\', 1980), (\'Groundhog Day\', 1993), (\'<a href=\"http://googl**e.com*/\">Jurassic Park</a>\', 1993), (\'Ferris Bueller\'s Day Off\', 1986);

select highlight(), year from movies where match(\'the dog\');

select highlight(), year from movies where match(\'days\') facet year;

select * from movies where match(\'google\');

Note that upon exiting the MySQL client, the Manticore container will be stopped and removed, resulting in no saved data, so use this way only for testing / sandboxing purposes.

Read the full instruction for the docker image for more details including our recommendations on running it in production.

Packages

Ubuntu, Debian, Centos, Windows and MacOS packages are here.

YUM repo for RHEL/Centos/Amazon/Oracle Linux

sudo yum install https://repo.**manticorese*arch.com/manticore-repo.noarch.rpm
sudo yum install manticore manticore-extra

APT repo for Ubuntu/Debian/Mint

wget https://repo.mantico*re**search.com/manticore-repo.noarch.deb
sudo dpkg -i manticore-repo.noarch.deb
sudo apt update
sudo apt install manticore manticore-extra

Homebrew on MacOS

brew install manticoresoftware/tap/manticoresearch manticoresoftware/tap/manticore-extra

Windows

See instruction here.

Clouds

  • Elestio

  • Hosting Ukraine

Documentation and community sites

  • Documentation

  • Interactive courses

  • Manticore Community Forum

  • Public Slack chat

  • Public Telegram chat (En)

  • Public Telegram chat (Ru)

  • Bug tracker

Third-party integrations

  • https://dev.*t*i*ki.org/Manticore-Search – TikiWiki CMS Groupware integration

  • https://github.**c*om/EvilFreelancer/laravel-manticoresearch – Laravel ManticoreSearch plugin

  • https://www.media*w*i*ki.org/wiki/Extension:SphinxSearch – extension for MediaWiki

  • https://github.***com/gordonbanderson/silverstripe-manticore-search – integration for SilverStripe

  • https://drwho.*vi**rtadpt.net/archive/2022-05-13/combining-manticore-and-searx/ – integration for SearX

  • https://gi*th*ub*.com/dimv36/sphinxlink – Extension for PostgreSQL for running search queries and returning data as PostgreSQL tables

How we can support you

Should your company require any help – we provide full-cycle services in the areas of Sphinx and Manticore Search:

  • Audit

  • Support

  • Consulting

  • Development

  • Training

More details here

How you can support Manticore Search

Manticore Search is an Open Source project with development made possible by support from our core team, contributors, and sponsors. Building premium Open Source software is not easy. If you would like to make sure Manticore Search stays free, here is how you can help the project:

  • Donation through PayPal

  • Become our client and let us help you

License

Manticore Search is distributed under GPLv3 or later. Manticore Search uses and re-distributes other open-source components. Please check the component licenses directory for details.

下载源码

通过命令行克隆项目:

git clone https://github.com/manticoresoftware/manticoresearch.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 manticoresearch https://www.zuozi.net/33587.html

milewski ctfp pdf
上一篇: milewski ctfp pdf
awesome cpp cn
下一篇: awesome cpp cn
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务