insightface

2025-12-10 0 724

InsightFace: 2D and 3D Face Analysis Project

InsightFace project is mainly maintained By Jia Guo and Jiankang Deng.

For all main contributors, please check contributing.

License

The code of InsightFace is released under the MIT License. There is no limitation for both academic and commercial usage.

The training data containing the annotation (and the models trained with these data) are available for non-commercial research purposes only.

Both manual-downloading models from our github repo and auto-downloading models with our python-library follow the above license policy(which is for non-commercial research purposes only).

Top News

2025-03-02 inswapper-512-live launched.

2024-08-01 We’ve integrated our most advanced face-swapping models, inswapper_cyn and inswapper_dax, into the Picsi.Ai face-swapping service. These models outperform nearly all commercial alternatives and our previous open-source model (inswapper_128).

2024-05-04 We have added InspireFace, which is a cross-platform face recognition SDK developed in C/C++, supporting multiple operating systems and various backends.

2022-08-12: We achieved Rank-1st of
Perspective Projection Based Monocular 3D Face Reconstruction Challenge
of ECCV-2022 WCPA Workshop, paper and code.

2021-10-29: We achieved 1st place on the VISA track of NIST-FRVT 1:1 by using Partial FC (Xiang An, Jiankang Deng, Jia Guo).

ChangeLogs

2025-03-02 inswapper-512-live launched.

2024-08-01 We’ve integrated our most advanced face-swapping models, inswapper_cyn and inswapper_dax, into the Picsi.Ai face-swapping service. These models outperform nearly all commercial alternatives and our previous open-source model (inswapper_128).

2024-05-04 We have added InspireFace, which is a cross-platform face recognition SDK developed in C/C++, supporting multiple operating systems and various backends.

2024-04-17: Monocular Identity-Conditioned Facial Reflectance Reconstruction accepted by CVPR-2024.

2023-08-08: We released the implementation of Generalizing Gaze Estimation with Weak-Supervision from Synthetic Views at reconstruction/gaze.

2023-05-03: We have launched the ongoing version of wild face anti-spoofing challenge. See details here.

2023-04-01: We integrated our most advanced face-swapping models: inswapper_cyn and inswapper_dax and move the service to Discord bot, which also support editing on Midjourney generated images, see detail at web-demos/swapping_discord and our Picsi.Ai website.

2023-02-13: We launch a large scale in the wild face anti-spoofing challenge on CVPR23 Workshop, see details at challenges/cvpr23-fas-wild.

2022-11-28: Single line code for facial identity swapping in our python packge ver 0.7, please check the example here.

2022-10-28: MFR-Ongoing website is refactored, please create issues if there\’s any bug.

2022-09-22: Now we have web-demos: face-localization, face-recognition, and face-swapping.

2022-08-12: We achieved Rank-1st of
Perspective Projection Based Monocular 3D Face Reconstruction Challenge
of ECCV-2022 WCPA Workshop, paper and code.

2022-03-30: Partial FC accepted by CVPR-2022.

2022-02-23: SCRFD accepted by ICLR-2022.

2021-11-30: MFR-Ongoing challenge launched(same with IFRT), which is an extended version of iccv21-mfr.

2021-10-29: We achieved 1st place on the VISA track of NIST-FRVT 1:1 by using Partial FC (Xiang An, Jiankang Deng, Jia Guo).

2021-10-11: Leaderboard of ICCV21 – Masked Face Recognition Challenge released. Video: Youtube, Bilibili.

2021-06-05: We launch a Masked Face Recognition Challenge & Workshop on ICCV 2021.

Introduction

InsightFace is an open source 2D&3D deep face analysis toolbox, mainly based on PyTorch and MXNet.

Please check our website for detail.

The master branch works with PyTorch 1.6+ and/or MXNet=1.6-1.8, with Python 3.x.

InsightFace efficiently implements a rich variety of state of the art algorithms of face recognition, face detection and face alignment, which optimized for both training and deployment.

Quick Start

Please start with our python-package, for testing detection, recognition and alignment models on input images.

ArcFace Video Demo

Please click the image to watch the Youtube video. For Bilibili users, click here.

Projects

The page on InsightFace website also describes all supported projects in InsightFace.

You may also interested in some challenges hold by InsightFace.

Face Recognition

Introduction

In this module, we provide training data, network settings and loss designs for deep face recognition.

The supported methods are as follows:

  • ArcFace_mxnet (CVPR\’2019)
  • ArcFace_torch (CVPR\’2019)
  • SubCenter ArcFace (ECCV\’2020)
  • PartialFC_mxnet (CVPR\’2022)
  • PartialFC_torch (CVPR\’2022)
  • VPL (CVPR\’2021)
  • Arcface_oneflow
  • ArcFace_Paddle (CVPR\’2019)

Commonly used network backbones are included in most of the methods, such as IResNet, MobilefaceNet, MobileNet, InceptionResNet_v2, DenseNet, etc..

Datasets

The training data includes, but not limited to the cleaned MS1M, VGG2 and CASIA-Webface datasets, which were already packed in MXNet binary format. Please dataset page for detail.

Evaluation

We provide standard IJB and Megaface evaluation pipelines in evaluation

Pretrained Models

Please check Model-Zoo for more pretrained models.

Third-party Re-implementation of ArcFace

  • TensorFlow: InsightFace_TF
  • TensorFlow: tf-insightface
  • TensorFlow:insightface
  • PyTorch: InsightFace_Pytorch
  • PyTorch: arcface-pytorch
  • Caffe: arcface-caffe
  • Caffe: CombinedMargin-caffe
  • Tensorflow: InsightFace-tensorflow
  • TensorRT: wang-xinyu/tensorrtx
  • TensorRT: InsightFace-REST
  • ONNXRuntime C++: ArcFace-ONNXRuntime
  • ONNXRuntime Go: arcface-go
  • MNN: ArcFace-MNN
  • TNN: ArcFace-TNN
  • NCNN: ArcFace-NCNN

Face Detection

Introduction

In this module, we provide training data with annotation, network settings and loss designs for face detection training, evaluation and inference.

The supported methods are as follows:

  • RetinaFace (CVPR\’2020)
  • SCRFD (Arxiv\’2021)
  • blazeface_paddle

RetinaFace is a practical single-stage face detector which is accepted by CVPR 2020. We provide training code, training dataset, pretrained models and evaluation scripts.

SCRFD is an efficient high accuracy face detection approach which is initialy described in Arxiv. We provide an easy-to-use pipeline to train high efficiency face detectors with NAS supporting.

Face Alignment

Introduction

In this module, we provide datasets and training/inference pipelines for face alignment.

Supported methods:

  • SDUNets (BMVC\’2018)
  • SimpleRegression

SDUNets is a heatmap based method which accepted on BMVC.

SimpleRegression provides very lightweight facial landmark models with fast coordinate regression. The input of these models is loose cropped face image while the output is the direct landmark coordinates.

Citation

If you find InsightFace useful in your research, please consider to cite the following related papers:

@inproceedings{ren2023pbidr,
  title={Facial Geometric Detail Recovery via Implicit Representation},
  author={Ren, Xingyu and Lattas, Alexandros and Gecer, Baris and Deng, Jiankang and Ma, Chao and Yang, Xiaokang},
  booktitle={2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG)},  
  year={2023}
 }

@article{guo2021sample,
  title={Sample and Computation Redistribution for Efficient Face Detection},
  author={Guo, Jia and Deng, Jiankang and Lattas, Alexandros and Zafeiriou, Stefanos},
  journal={arXiv preprint arXiv:2105.04714},
  year={2021}
}

@inproceedings{gecer2021ostec,
  title={OSTeC: One-Shot Texture Completion},
  author={Gecer, Baris and Deng, Jiankang and Zafeiriou, Stefanos},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

@inproceedings{an_2022_pfc_cvpr,
  title={Killing Two Birds with One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC},
  author={An, Xiang and Deng, Jiangkang and Guo, Jia and Feng, Ziyong and Zhu, Xuhan and Jing, Yang and Tongliang, Liu},
  booktitle={CVPR},
  year={2022}
}
@inproceedings{an_2021_pfc_iccvw,
  title={Partial FC: Training 10 Million Identities on a Single Machine},
  author={An, Xiang and Zhu, Xuhan and Gao, Yuan and Xiao, Yang and Zhao, Yongle and Feng, Ziyong and Wu, Lan and Qin, Bin and Zhang, Ming and Zhang, Debing and Fu, Ying},
  booktitle={ICCVW},
  year={2021},
}


@inproceedings{deng2020subcenter,
  title={Sub-center ArcFace: Boosting Face Recognition by Large-scale Noisy Web Faces},
  author={Deng, Jiankang and Guo, Jia and Liu, Tongliang and Gong, Mingming and Zafeiriou, Stefanos},
  booktitle={Proceedings of the IEEE Conference on European Conference on Computer Vision},
  year={2020}
}

@inproceedings{Deng2020CVPR,
title = {RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild},
author = {Deng, Jiankang and Guo, Jia and Ververas, Evangelos and Kotsia, Irene and Zafeiriou, Stefanos},
booktitle = {CVPR},
year = {2020}
}

@inproceedings{guo2018stacked,
  title={Stacked Dense U-Nets with Dual Transformers for Robust Face Alignment},
  author={Guo, Jia and Deng, Jiankang and Xue, Niannan and Zafeiriou, Stefanos},
  booktitle={BMVC},
  year={2018}
}

@article{deng2018menpo,
  title={The Menpo benchmark for multi-pose 2D and 3D facial landmark localisation and tracking},
  author={Deng, Jiankang and Roussos, Anastasios and Chrysos, Grigorios and Ververas, Evangelos and Kotsia, Irene and Shen, Jie and Zafeiriou, Stefanos},
  journal={IJCV},
  year={2018}
}

@inproceedings{deng2018arcface,
title={ArcFace: Additive Angular Margin Loss for Deep Face Recognition},
author={Deng, Jiankang and Guo, Jia and Niannan, Xue and Zafeiriou, Stefanos},
booktitle={CVPR},
year={2019}
}

Contributing

Main contributors:

  • Jia Guo, guojia[at]gmail.com
  • Jiankang Deng jiankangdeng[at]gmail.com
  • Xiang An anxiangsir[at]gmail.com
  • Jack Yu jackyu961127[at]gmail.com
  • Baris Gecer barisgecer[at]msn.com

下载源码

通过命令行克隆项目:

git clone https://github.com/deepinsight/insightface.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 insightface https://www.zuozi.net/33482.html

Markdown2Pdf
上一篇: Markdown2Pdf
rvc cli
下一篇: rvc cli
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务