datasets

2025-12-10 0 828

? Datasets is a lightweight library providing two main features:

  • one-line dataloaders for many public datasets: one-liners to download and pre-process any of the major public datasets (image datasets, audio datasets, text datasets in 467 languages and dialects, etc.) provided on the HuggingFace Datasets Hub. With a simple command like squad_dataset = load_dataset(\"rajpurkar/squad\"), get any of these datasets ready to use in a dataloader for training/evaluating a ML model (Numpy/Pandas/PyTorch/TensorFlow/JAX),
  • efficient data pre-processing: simple, fast and reproducible data pre-processing for the public datasets as well as your own local datasets in CSV, JSON, text, PNG, JPEG, WAV, MP3, Parquet, etc. With simple commands like processed_dataset = dataset.map(process_example), efficiently prepare the dataset for inspection and ML model evaluation and training.

? Documentation ? Find a dataset in the Hub ? Share a dataset on the Hub

? Datasets is designed to let the community easily add and share new datasets.

? Datasets has many additional interesting features:

  • Thrive on large datasets: ? Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow).
  • Smart caching: never wait for your data to process several times.
  • Lightweight and fast with a transparent and pythonic API (multi-processing/caching/memory-mapping).
  • Built-in interoperability with NumPy, PyTorch, TensorFlow 2, JAX, Pandas, Polars and more.
  • Native support for audio, image and video data.
  • Enable streaming mode to save disk space and start iterating over the dataset immediately.

? Datasets originated from a fork of the awesome TensorFlow Datasets and the HuggingFace team want to deeply thank the TensorFlow Datasets team for building this amazing library.

Installation

With pip

? Datasets can be installed from PyPi and has to be installed in a virtual environment (venv or conda for instance)

pip install datasets

With conda

? Datasets can be installed using conda as follows:

conda install -c huggingface -c conda-forge datasets

Follow the installation pages of TensorFlow and PyTorch to see how to install them with conda.

For more details on installation, check the installation page in the documentation: https://hugging**f*ace.co/docs/datasets/installation

Installation to use with Machine Learning & Data frameworks frameworks

If you plan to use ? Datasets with PyTorch (2.0+), TensorFlow (2.6+) or JAX (3.14+) you should also install PyTorch, TensorFlow or JAX.
? Datasets is also well integrated with data frameworks like PyArrow, Pandas, Polars and Spark, which should be installed separately.

For more details on using the library with these frameworks, check the quick start page in the documentation: https://h*ug*g*ingface.co/docs/datasets/quickstart

Usage

? Datasets is made to be very simple to use – the API is centered around a single function, datasets.load_dataset(dataset_name, **kwargs), that instantiates a dataset.

This library can be used for text/image/audio/etc. datasets. Here is an example to load a text dataset:

Here is a quick example:

from datasets import load_dataset

# Print all the available datasets
from huggingface_hub import list_datasets
print([dataset.id for dataset in list_datasets()])

# Load a dataset and print the first example in the training set
squad_dataset = load_dataset(\'rajpurkar/squad\')
print(squad_dataset[\'train\'][0])

# Process the dataset - add a column with the length of the context texts
dataset_with_length = squad_dataset.map(lambda x: {\"length\": len(x[\"context\"])})

# Process the dataset - tokenize the context texts (using a tokenizer from the ? Transformers library)
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(\'bert-base-cased\')

tokenized_dataset = squad_dataset.map(lambda x: tokenizer(x[\'context\']), batched=True)

If your dataset is bigger than your disk or if you don\’t want to wait to download the data, you can use streaming:

# If you want to use the dataset immediately and efficiently stream the data as you iterate over the dataset
image_dataset = load_dataset(\'timm/imagenet-1k-wds\', streaming=True)
for example in image_dataset[\"train\"]:
    break

For more details on using the library, check the quick start page in the documentation: https://h*ug*g*ingface.co/docs/datasets/quickstart and the specific pages on:

  • Loading a dataset: https://*hu*ggingfa*ce.co/docs/datasets/loading
  • What\’s in a Dataset: https://hu**ggingfac*e.co/docs/datasets/access
  • Processing data with ? Datasets: https://huggingf**a*ce.co/docs/datasets/process
    • Processing audio data: https://hugg*ing*fa*ce.co/docs/datasets/audio_process
    • Processing image data: https://hu*ggingfa**ce.co/docs/datasets/image_process
    • Processing text data: https://*hugging**face.co/docs/datasets/nlp_process
  • Streaming a dataset: https://*hugg*in*gface.co/docs/datasets/stream
  • etc.

Add a new dataset to the Hub

We have a very detailed step-by-step guide to add a new dataset to the datasets already provided on the HuggingFace Datasets Hub.

You can find:

  • how to upload a dataset to the Hub using your web browser or Python and also
  • how to upload it using Git.

Disclaimers

You can use ? Datasets to load datasets based on versioned git repositories maintained by the dataset authors. For reproducibility reasons, we ask users to pin the revision of the repositories they use.

If you\’re a dataset owner and wish to update any part of it (description, citation, license, etc.), or do not want your dataset to be included in the Hugging Face Hub, please get in touch by opening a discussion or a pull request in the Community tab of the dataset page. Thanks for your contribution to the ML community!

BibTeX

If you want to cite our ? Datasets library, you can use our paper:

@inproceedings{lhoest-etal-2021-datasets,
    title = \"Datasets: A Community Library for Natural Language Processing\",
    author = \"Lhoest, Quentin  and
      Villanova del Moral, Albert  and
      Jernite, Yacine  and
      Thakur, Abhishek  and
      von Platen, Patrick  and
      Patil, Suraj  and
      Chaumond, Julien  and
      Drame, Mariama  and
      Plu, Julien  and
      Tunstall, Lewis  and
      Davison, Joe  and
      {\\v{S}}a{\\v{s}}ko, Mario  and
      Chhablani, Gunjan  and
      Malik, Bhavitvya  and
      Brandeis, Simon  and
      Le Scao, Teven  and
      Sanh, Victor  and
      Xu, Canwen  and
      Patry, Nicolas  and
      McMillan-Major, Angelina  and
      Schmid, Philipp  and
      Gugger, Sylvain  and
      Delangue, Cl{\\\'e}ment  and
      Matussi{\\`e}re, Th{\\\'e}o  and
      Debut, Lysandre  and
      Bekman, Stas  and
      Cistac, Pierric  and
      Goehringer, Thibault  and
      Mustar, Victor  and
      Lagunas, Fran{\\c{c}}ois  and
      Rush, Alexander  and
      Wolf, Thomas\",
    booktitle = \"Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing: System Demonstrations\",
    month = nov,
    year = \"2021\",
    address = \"Online and Punta Cana, Dominican Republic\",
    publisher = \"Association for Computational Linguistics\",
    url = \"https://*acla*nt*hology.org/2021.emnlp-demo.21\",
    pages = \"175--184\",
    abstract = \"The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://gith*ub*.c*om/huggingface/datasets.\",
    eprint={2109.02846},
    archivePrefix={arXiv},
    primaryClass={cs.CL},
}

If you need to cite a specific version of our ? Datasets library for reproducibility, you can use the corresponding version Zenodo DOI from this list.

下载源码

通过命令行克隆项目:

git clone https://github.com/huggingface/datasets.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 datasets https://www.zuozi.net/33425.html

FoxPro2CSV
下一篇: FoxPro2CSV
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务