onnx

2025-12-10 0 1,001

Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers
to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard
data types. Currently we focus on the capabilities needed for inferencing (scoring).

ONNX is widely supported and can be found in many frameworks, tools, and hardware. Enabling interoperability between different frameworks and streamlining the path from research to production helps increase the speed of innovation in the AI community. We invite the community to join us and further evolve ONNX.

Use ONNX

  • Documentation of ONNX Python Package
  • Tutorials for creating ONNX models
  • Pre-trained ONNX models

Learn about the ONNX spec

  • Overview
  • ONNX intermediate representation spec
  • Versioning principles of the spec
  • Operators documentation
  • Operators documentation (latest release)
  • Python API Overview

Programming utilities for working with ONNX Graphs

  • Shape and Type Inference
  • Graph Optimization
  • Opset Version Conversion

Contribute

ONNX is a community project and the open governance model is described here. We encourage you to join the effort and contribute feedback, ideas, and code. You can participate in the Special Interest Groups and Working Groups to shape the future of ONNX.

Check out our contribution guide to get started.

If you think some operator should be added to ONNX specification, please read
this document.

Community meetings

The schedules of the regular meetings of the Steering Committee, the working groups and the SIGs can be found here

Community Meetups are held at least once a year. Content from previous community meetups are at:

  • 2020.04.09 https://lf-aidata.atla*s*s*ian.net/wiki/spaces/DL/pages/14091402/LF+AI+Day+-ONNX+Community+Virtual+Meetup+-+Silicon+Valley+-+2020+April+9
  • 2020.10.14 https://lf-aidata.**atlass*ian.net/wiki/spaces/DL/pages/14092138/LF+AI+Day+-+ONNX+Community+Workshop+-+2020+October+14
  • 2021.03.24 https://lf-aidata.*atlass*i*an.net/wiki/spaces/DL/pages/14092424/Instructions+for+Event+Hosts+-+LF+AI+Data+Day+-+ONNX+Virtual+Community+Meetup+-+March+2021
  • 2021.10.21 https://lf-aidata.at*la**ssian.net/wiki/spaces/DL/pages/14093194/LF+AI+Data+Day+ONNX+Community+Virtual+Meetup+-+October+2021
  • 2022.06.24 https://lf-aidata.a*t*lassia*n.net/wiki/spaces/DL/pages/14093969/ONNX+Community+Day+-+2022+June+24
  • 2023.06.28 https://lf-aidata.a*tla**ssian.net/wiki/spaces/DL/pages/14094507/ONNX+Community+Day+2023+-+June+28

Discuss

We encourage you to open Issues, or use Slack (If you have not joined yet, please use this link to join the group) for more real-time discussion.

Follow Us

Stay up to date with the latest ONNX news. [Facebook] [Twitter]

Roadmap

A roadmap process takes place every year. More details can be found here

Installation

ONNX released packages are published in PyPi.

pip install onnx # or pip install onnx[reference] for optional reference implementation dependencies

ONNX weekly packages are published in PyPI to enable experimentation and early testing.

Detailed install instructions, including Common Build Options and Common Errors can be found here

Testing

ONNX uses pytest as test driver. In order to run tests, you will first need to install pytest:

pip install pytest

After installing pytest, use the following command to run tests.

pytest

Development

Check out the contributor guide for instructions.

License

Apache License v2.0

Code of Conduct

ONNX Open Source Code of Conduct

下载源码

通过命令行克隆项目:

git clone https://github.com/onnx/onnx.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 onnx https://www.zuozi.net/33416.html

常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务