nni

2025-12-10 0 567

NNI automates feature engineering, neural architecture search, hyperparameter tuning, and model compression for deep learning. Find the latest features, API, examples and tutorials in our official documentation (简体中文版点这里).

What\’s NEW!  

  • New release: v3.0 preview is availablereleased on May-5-2022
  • New demo available: Youtube entry | Bilibili 入口 – last updated on June-22-2022
  • New research paper: SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute – published in OSDI 2022
  • New research paper: Privacy-preserving Online AutoML for Domain-Specific Face Detection – published in CVPR 2022
  • Newly upgraded documentation: Doc upgraded

Installation

See the NNI installation guide to install from pip, or build from source.

To install the current release:

$ pip install nni

To update NNI to the latest version, add --upgrade flag to the above commands.

NNI capabilities in a glance

Hyperparameter Tuning

Neural Architecture Search

Model Compression

Algorithms
  • Exhaustive search
    • Grid Search
    • Random
  • Heuristic search
    • Anneal
    • Evolution
    • Hyperband
    • PBT
  • Bayesian optimization
    • BOHB
    • DNGO
    • GP
    • Metis
    • SMAC
    • TPE
  • Multi-trial
    • Grid Search
    • Policy Based RL
    • Random
    • Regularized Evolution
    • TPE
  • One-shot
    • DARTS
    • ENAS
    • FBNet
    • ProxylessNAS
    • SPOS
  • Pruning
    • Level
    • L1 Norm
    • Taylor FO Weight
    • Movement
    • AGP
    • Auto Compress
    • More…
  • Quantization
    • Naive
    • QAT
    • LSQ
    • Observer
    • DoReFa
    • BNN
Supported Frameworks

Training Services

Tutorials

Supports
  • PyTorch
  • TensorFlow
  • Scikit-learn
  • XGBoost
  • LightGBM
  • MXNet
  • Caffe2
  • More…
  • Local machine
  • Remote SSH servers
  • Azure Machine Learning (AML)
  • Kubernetes Based
    • OpenAPI
    • Kubeflow
    • FrameworkController
    • AdaptDL
    • PAI DLC
  • Hybrid training services
  • HPO
    • PyTorch
    • TensorFlow
  • NAS
    • Hello NAS
    • NAS Benchmarks
  • Compression
    • Pruning
    • Pruning Speedup
    • Quantization
    • Quantization Speedup

Resources

  • NNI Documentation Homepage
  • NNI Installation Guide
  • NNI Examples
  • Python API Reference
  • Releases (Change Log)
  • Related Research and Publications
  • Youtube Channel of NNI
  • Bilibili Space of NNI
  • Webinar of Introducing Retiarii: A deep learning exploratory-training framework on NNI
  • Community Discussions

Contribution guidelines

If you want to contribute to NNI, be sure to review the contribution guidelines, which includes instructions of submitting feedbacks, best coding practices, and code of conduct.

We use GitHub issues to track tracking requests and bugs.
Please use NNI Discussion for general questions and new ideas.
For questions of specific use cases, please go to Stack Overflow.

Participating discussions via the following IM groups is also welcomed.

Gitter WeChat
OR

Over the past few years, NNI has received thousands of feedbacks on GitHub issues, and pull requests from hundreds of contributors.
We appreciate all contributions from community to make NNI thrive.

Test status

Essentials

Type Status
Fast test
Full test – HPO
Full test – NAS
Full test – compression

Training services

Type Status
Local – linux
Local – windows
Remote – linux to linux
Remote – windows to windows
OpenPAI
Frameworkcontroller
Kubeflow
Hybrid
AzureML

Related Projects

Targeting at openness and advancing state-of-art technology, Microsoft Research (MSR) had also released few other open source projects.

  • OpenPAI : an open source platform that provides complete AI model training and resource management capabilities, it is easy to extend and supports on-premise, cloud and hybrid environments in various scale.
  • FrameworkController : an open source general-purpose Kubernetes Pod Controller that orchestrate all kinds of applications on Kubernetes by a single controller.
  • MMdnn : A comprehensive, cross-framework solution to convert, visualize and diagnose deep neural network models. The \”MM\” in MMdnn stands for model management and \”dnn\” is an acronym for deep neural network.
  • SPTAG : Space Partition Tree And Graph (SPTAG) is an open source library for large scale vector approximate nearest neighbor search scenario.
  • nn-Meter : An accurate inference latency predictor for DNN models on diverse edge devices.

We encourage researchers and students leverage these projects to accelerate the AI development and research.

License

The entire codebase is under MIT license.

下载源码

通过命令行克隆项目:

git clone https://github.com/microsoft/nni.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 nni https://www.zuozi.net/33362.html

PowerBuilder Utility
上一篇: PowerBuilder Utility
FileHash
下一篇: FileHash
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务