kornia

2025-12-10 0 184


English | 简体中文

Docs •
Try it Now •
Tutorials •
Examples •
Blog •
Community

Kornia is a differentiable computer vision library that provides a rich set of differentiable image processing and geometric vision algorithms. Built on top of PyTorch, Kornia integrates seamlessly into existing AI workflows, allowing you to leverage powerful batch transformations, auto-differentiation and GPU acceleration. Whether you’re working on image transformations, augmentations, or AI-driven image processing, Kornia equips you with the tools you need to bring your ideas to life.

Key Components

  1. Differentiable Image Processing
    Kornia provides a comprehensive suite of image processing operators, all differentiable and ready to integrate into deep learning pipelines.

    • Filters: Gaussian, Sobel, Median, Box Blur, etc.
    • Transformations: Affine, Homography, Perspective, etc.
    • Enhancements: Histogram Equalization, CLAHE, Gamma Correction, etc.
    • Edge Detection: Canny, Laplacian, Sobel, etc.
    • … check our docs for more.
  2. Advanced Augmentations
    Perform powerful data augmentation with Kornia’s built-in functions, ideal for training AI models with complex augmentation pipelines.

    • Augmentation Pipeline: AugmentationSequential, PatchSequential, VideoSequential, etc.
    • Automatic Augmentation: AutoAugment, RandAugment, TrivialAugment.
  3. AI Models
    Leverage pre-trained AI models optimized for a variety of vision tasks, all within the Kornia ecosystem.

    • Face Detection: YuNet
    • Feature Matching: LoFTR, LightGlue
    • Feature Descriptor: DISK, DeDoDe, SOLD2
    • Segmentation: SAM
    • Classification: MobileViT, VisionTransformer.
See here for some of the methods that we support! (>500 ops in total !)
Category Methods/Models
Image Processing – Color conversions (RGB, Grayscale, HSV, etc.)
– Geometric transformations (Affine, Homography, Resizing, etc.)
– Filtering (Gaussian blur, Median blur, etc.)
– Edge detection (Sobel, Canny, etc.)
– Morphological operations (Erosion, Dilation, etc.)
Augmentation – Random cropping, Erasing
– Random geometric transformations (Affine, flipping, Fish Eye, Perspecive, Thin plate spline, Elastic)
– Random noises (Gaussian, Median, Motion, Box, Rain, Snow, Salt and Pepper)
– Random color jittering (Contrast, Brightness, CLAHE, Equalize, Gamma, Hue, Invert, JPEG, Plasma, Posterize, Saturation, Sharpness, Solarize)
– Random MixUp, CutMix, Mosaic, Transplantation, etc.
Feature Detection – Detector (Harris, GFTT, Hessian, DoG, KeyNet, DISK and DeDoDe)
– Descriptor (SIFT, HardNet, TFeat, HyNet, SOSNet, and LAFDescriptor)
– Matching (nearest neighbor, mutual nearest neighbor, geometrically aware matching, AdaLAM LightGlue, and LoFTR)
Geometry – Camera models and calibration
– Stereo vision (epipolar geometry, disparity, etc.)
– Homography estimation
– Depth estimation from disparity
– 3D transformations
Deep Learning Layers – Custom convolution layers
– Recurrent layers for vision tasks
– Loss functions (e.g., SSIM, PSNR, etc.)
– Vision-specific optimizers
Photometric Functions – Photometric loss functions
– Photometric augmentations
Filtering – Bilateral filtering
– DexiNed
– Dissolving
– Guided Blur
– Laplacian
– Gaussian
– Non-local means
– Sobel
– Unsharp masking
Color – Color space conversions
– Brightness/contrast adjustment
– Gamma correction
Stereo Vision – Disparity estimation
– Depth estimation
– Rectification
Image Registration – Affine and homography-based registration
– Image alignment using feature matching
Pose Estimation – Essential and Fundamental matrix estimation
– PnP problem solvers
– Pose refinement
Optical Flow – Farneback optical flow
– Dense optical flow
– Sparse optical flow
3D Vision – Depth estimation
– Point cloud operations
– Nerf
Image Denoising – Gaussian noise removal
– Poisson noise removal
Edge Detection – Sobel operator
– Canny edge detection
Transformations – Rotation
– Translation
– Scaling
– Shearing
Loss Functions – SSIM (Structural Similarity Index Measure)
– PSNR (Peak Signal-to-Noise Ratio)
– Cauchy
– Charbonnier
– Depth Smooth
– Dice
– Hausdorff
– Tversky
– Welsch
Morphological Operations – Dilation
– Erosion
– Opening
– Closing

Sponsorship

Kornia is an open-source project that is developed and maintained by volunteers. Whether you\’re using it for research or commercial purposes, consider sponsoring or collaborating with us. Your support will help ensure Kornia\’s growth and ongoing innovation. Reach out to us today and be a part of shaping the future of this exciting initiative!

Installation

From pip

pip install kornia
Other installation options

From source with editable mode

pip install -e .

From Github url (latest version)

pip install git+https://*gi*thub.*com/kornia/kornia

Quick Start

Kornia is not just another computer vision library — it\’s your gateway to effortless Computer Vision and AI.

Get started with Kornia image transformation and augmentation!
import numpy as np
import kornia_rs as kr

from kornia.augmentation import AugmentationSequential, RandomAffine, RandomBrightness
from kornia.filters import StableDiffusionDissolving

# Load and prepare your image
img: np.ndarray = kr.read_image_any(\"img.jpeg\")
img = kr.resize(img, (256, 256), interpolation=\"bilinear\")

# alternatively, load image with PIL
# img = Image.open(\"img.jpeg\").resize((256, 256))
# img = np.array(img)

img = np.stack([img] * 2)  # batch images

# Define an augmentation pipeline
augmentation_pipeline = AugmentationSequential(
    RandomAffine((-45., 45.), p=1.),
    RandomBrightness((0.,1.), p=1.)
)

# Leveraging StableDiffusion models
dslv_op = StableDiffusionDissolving()

img = augmentation_pipeline(img)
dslv_op(img, step_number=500)

dslv_op.save(\"Kornia-enhanced.jpg\")
Find out Kornia ONNX models with ONNXSequential!
import numpy as np
from kornia.onnx import ONNXSequential
# Chain ONNX models from HuggingFace repo and your own local model together
onnx_seq = ONNXSequential(
    \"hf://operators/kornia.geometry.transform.flips.Hflip\",
    \"hf://models/kornia.models.detection.rtdetr_r18vd_640x640\",  # Or you may use \"YOUR_OWN_MODEL.onnx\"
)
# Prepare some input data
input_data = np.random.randn(1, 3, 384, 512).astype(np.float32)
# Perform inference
outputs = onnx_seq(input_data)
# Print the model outputs
print(outputs)

# Export a new ONNX model that chains up all three models together!
onnx_seq.export(\"chained_model.onnx\")

Multi-framework support

You can now use Kornia with TensorFlow, JAX, and NumPy. See Multi-Framework Support for more details.

import kornia
tf_kornia = kornia.to_tensorflow()

Powered by

Call For Contributors

Are you passionate about computer vision, AI, and open-source development? Join us in shaping the future of Kornia! We are actively seeking contributors to help expand and enhance our library, making it even more powerful, accessible, and versatile. Whether you\’re an experienced developer or just starting, there\’s a place for you in our community.

Accessible AI Models

We are excited to announce our latest advancement: a new initiative designed to seamlessly integrate lightweight AI models into Kornia.
We aim to run any models as smooth as big models such as StableDiffusion, to support them well in many perspectives.
We have already included a selection of lightweight AI models like YuNet (Face Detection), Loftr (Feature Matching), and SAM (Segmentation). Now, we\’re looking for contributors to help us:

  • Expand the Model Selection: Import decent models into our library. If you are a researcher, Kornia is an excellent place for you to promote your model!
  • Model Optimization: Work on optimizing models to reduce their computational footprint while maintaining accuracy and performance. You may start from offering ONNX support!
  • Model Documentation: Create detailed guides and examples to help users get the most out of these models in their projects.

Documentation And Tutorial Optimization

Kornia\’s foundation lies in its extensive collection of classic computer vision operators, providing robust tools for image processing, feature extraction, and geometric transformations. We continuously seek for contributors to help us improve our documentation and present nice tutorials to our users.

Cite

If you are using kornia in your research-related documents, it is recommended that you cite the paper. See more in CITATION.

@inproceedings{eriba2019kornia,
  author    = {E. Riba, D. Mishkin, D. Ponsa, E. Rublee and G. Bradski},
  title     = {Kornia: an Open Source Differentiable Computer Vision Library for PyTorch},
  booktitle = {Winter Conference on Applications of Computer Vision},
  year      = {2020},
  url       = {https://*arxiv.*or*g/pdf/1910.02190.pdf}
}

Contributing

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us. Please, consider reading the CONTRIBUTING notes. The participation in this open source project is subject to Code of Conduct.

Community

  • Discord: Join our workspace to keep in touch with our core contributors, get latest updates on the industry and be part of our community. JOIN HERE
  • GitHub Issues: bug reports, feature requests, install issues, RFCs, thoughts, etc. OPEN
  • Forums: discuss implementations, research, etc. GitHub Forums

Made with contrib.rocks.

License

Kornia is released under the Apache 2.0 license. See the LICENSE file for more information.

下载源码

通过命令行克隆项目:

git clone https://github.com/kornia/kornia.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 kornia https://www.zuozi.net/33250.html

pbimage
上一篇: pbimage
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务