petals

2025-12-10 0 830


Run large language models at home, BitTorrent-style.
Fine-tuning and inference up to 10x faster than offloading

Generate text with distributed Llama 3.1 (up to 405B), Mixtral (8x22B), Falcon (40B+) or BLOOM (176B) and fine‑tune them for your own tasks — right from your desktop computer or Google Colab:

from transformers import AutoTokenizer
from petals import AutoDistributedModelForCausalLM

# Choose any model available at https://health.p***etals.dev
model_name = \"meta-llama/Meta-Llama-3.1-405B-Instruct\"

# Connect to a distributed network hosting model layers
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoDistributedModelForCausalLM.from_pretrained(model_name)

# Run the model as if it were on your computer
inputs = tokenizer(\"A cat sat\", return_tensors=\"pt\")[\"input_ids\"]
outputs = model.generate(inputs, max_new_tokens=5)
print(tokenizer.decode(outputs[0]))  # A cat sat on a mat...

 Try now in Colab

? Want to run Llama? Request access to its weights, then run huggingface-cli login in the terminal before loading the model. Or just try it in our chatbot app.

? Privacy. Your data will be processed with the help of other people in the public swarm. Learn more about privacy here. For sensitive data, you can set up a private swarm among people you trust.

Any questions? Ping us in our Discord!

Connect your GPU and increase Petals capacity

Petals is a community-run system — we rely on people sharing their GPUs. You can help serving one of the available models or host a new model from ? Model Hub!

As an example, here is how to host a part of Llama 3.1 (405B) Instruct on your GPU:

? Want to host Llama? Request access to its weights, then run huggingface-cli login in the terminal before loading the model.

? Linux + Anaconda. Run these commands for NVIDIA GPUs (or follow this for AMD):

conda install pytorch pytorch-cuda=11.7 -c pytorch -c nvidia
pip install git+https://gith*ub**.com/bigscience-workshop/petals
python -m petals.cli.run_server meta-llama/Meta-Llama-3.1-405B-Instruct

? Windows + WSL. Follow this guide on our Wiki.

? Docker. Run our Docker image for NVIDIA GPUs (or follow this for AMD):

sudo docker run -p 31330:31330 --ipc host --gpus all --volume petals-cache:/cache --rm \\
    learningathome/petals:main \\
    python -m petals.cli.run_server --port 31330 meta-llama/Meta-Llama-3.1-405B-Instruct

? macOS + Apple M1/M2 GPU. Install Homebrew, then run these commands:

brew install python
python3 -m pip install git+https://gith*ub**.com/bigscience-workshop/petals
python3 -m petals.cli.run_server meta-llama/Meta-Llama-3.1-405B-Instruct

 Learn more (how to use multiple GPUs, start the server on boot, etc.)

Security. Hosting a server does not allow others to run custom code on your computer. Learn more here.

Any questions? Ping us in our Discord!

? Thank you! Once you load and host 10+ blocks, we can show your name or link on the swarm monitor as a way to say thanks. You can specify them with --public_name YOUR_NAME.

How does it work?

  • You load a small part of the model, then join a network of people serving the other parts. Single‑batch inference runs at up to 6 tokens/sec for Llama 2 (70B) and up to 4 tokens/sec for Falcon (180B) — enough for chatbots and interactive apps.
  • You can employ any fine-tuning and sampling methods, execute custom paths through the model, or see its hidden states. You get the comforts of an API with the flexibility of PyTorch and ? Transformers.

 Read paper
          
 See FAQ

Tutorials, examples, and more

Basic tutorials:

  • Getting started: tutorial
  • Prompt-tune Llama-65B for text semantic classification: tutorial
  • Prompt-tune BLOOM to create a personified chatbot: tutorial

Useful tools:

  • Chatbot web app (connects to Petals via an HTTP/WebSocket endpoint): source code
  • Monitor for the public swarm: source code

Advanced guides:

  • Launch a private swarm: guide
  • Run a custom model: guide

Benchmarks

Please see Section 3.3 of our paper.

Contributing

Please see our FAQ on contributing.

Citations

Alexander Borzunov, Dmitry Baranchuk, Tim Dettmers, Max Ryabinin, Younes Belkada, Artem Chumachenko, Pavel Samygin, and Colin Raffel.
Petals: Collaborative Inference and Fine-tuning of Large Models.
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations). 2023.

@inproceedings{borzunov2023petals,
  title = {Petals: Collaborative Inference and Fine-tuning of Large Models},
  author = {Borzunov, Alexander and Baranchuk, Dmitry and Dettmers, Tim and Riabinin, Maksim and Belkada, Younes and Chumachenko, Artem and Samygin, Pavel and Raffel, Colin},
  booktitle = {Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)},
  pages = {558--568},
  year = {2023},
  url = {https://arxi*v.*o*rg/abs/2209.01188}
}

Alexander Borzunov, Max Ryabinin, Artem Chumachenko, Dmitry Baranchuk, Tim Dettmers, Younes Belkada, Pavel Samygin, and Colin Raffel.
Distributed inference and fine-tuning of large language models over the Internet.
Advances in Neural Information Processing Systems 36 (2023).

@inproceedings{borzunov2023distributed,
  title = {Distributed inference and fine-tuning of large language models over the {I}nternet},
  author = {Borzunov, Alexander and Ryabinin, Max and Chumachenko, Artem and Baranchuk, Dmitry and Dettmers, Tim and Belkada, Younes and Samygin, Pavel and Raffel, Colin},
  booktitle = {Advances in Neural Information Processing Systems},
  volume = {36},
  pages = {12312--12331},
  year = {2023},
  url = {https://arxi*v.**org/abs/2312.08361}
}

This project is a part of the BigScience research workshop.

下载源码

通过命令行克隆项目:

git clone https://github.com/bigscience-workshop/petals.git

收藏 (0) 打赏

感谢您的支持,我会继续努力的!

打开微信/支付宝扫一扫,即可进行扫码打赏哦,分享从这里开始,精彩与您同在
点赞 (0)

申明:本文由第三方发布,内容仅代表作者观点,与本网站无关。对本文以及其中全部或者部分内容的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。本网发布或转载文章出于传递更多信息之目的,并不意味着赞同其观点或证实其描述,也不代表本网对其真实性负责。

左子网 编程相关 petals https://www.zuozi.net/33111.html

flutter
上一篇: flutter
transformers
下一篇: transformers
常见问题
  • 1、自动:拍下后,点击(下载)链接即可下载;2、手动:拍下后,联系卖家发放即可或者联系官方找开发者发货。
查看详情
  • 1、源码默认交易周期:手动发货商品为1-3天,并且用户付款金额将会进入平台担保直到交易完成或者3-7天即可发放,如遇纠纷无限期延长收款金额直至纠纷解决或者退款!;
查看详情
  • 1、描述:源码描述(含标题)与实际源码不一致的(例:货不对板); 2、演示:有演示站时,与实际源码小于95%一致的(但描述中有”不保证完全一样、有变化的可能性”类似显著声明的除外); 3、发货:不发货可无理由退款; 4、安装:免费提供安装服务的源码但卖家不履行的; 5、收费:价格虚标,额外收取其他费用的(但描述中有显著声明或双方交易前有商定的除外); 6、其他:如质量方面的硬性常规问题BUG等。 注:经核实符合上述任一,均支持退款,但卖家予以积极解决问题则除外。
查看详情
  • 1、左子会对双方交易的过程及交易商品的快照进行永久存档,以确保交易的真实、有效、安全! 2、左子无法对如“永久包更新”、“永久技术支持”等类似交易之后的商家承诺做担保,请买家自行鉴别; 3、在源码同时有网站演示与图片演示,且站演与图演不一致时,默认按图演作为纠纷评判依据(特别声明或有商定除外); 4、在没有”无任何正当退款依据”的前提下,商品写有”一旦售出,概不支持退款”等类似的声明,视为无效声明; 5、在未拍下前,双方在QQ上所商定的交易内容,亦可成为纠纷评判依据(商定与描述冲突时,商定为准); 6、因聊天记录可作为纠纷评判依据,故双方联系时,只与对方在左子上所留的QQ、手机号沟通,以防对方不承认自我承诺。 7、虽然交易产生纠纷的几率很小,但一定要保留如聊天记录、手机短信等这样的重要信息,以防产生纠纷时便于左子介入快速处理。
查看详情

相关文章

猜你喜欢
发表评论
暂无评论
官方客服团队

为您解决烦忧 - 24小时在线 专业服务